123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339 |
- /* dlarrj.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Subroutine */ int _starpu_dlarrj_(integer *n, doublereal *d__, doublereal *e2,
- integer *ifirst, integer *ilast, doublereal *rtol, integer *offset,
- doublereal *w, doublereal *werr, doublereal *work, integer *iwork,
- doublereal *pivmin, doublereal *spdiam, integer *info)
- {
- /* System generated locals */
- integer i__1, i__2;
- doublereal d__1, d__2;
- /* Builtin functions */
- double log(doublereal);
- /* Local variables */
- integer i__, j, k, p;
- doublereal s;
- integer i1, i2, ii;
- doublereal fac, mid;
- integer cnt;
- doublereal tmp, left;
- integer iter, nint, prev, next, savi1;
- doublereal right, width, dplus;
- integer olnint, maxitr;
- /* -- LAPACK auxiliary routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* Given the initial eigenvalue approximations of T, DLARRJ */
- /* does bisection to refine the eigenvalues of T, */
- /* W( IFIRST-OFFSET ) through W( ILAST-OFFSET ), to more accuracy. Initial */
- /* guesses for these eigenvalues are input in W, the corresponding estimate */
- /* of the error in these guesses in WERR. During bisection, intervals */
- /* [left, right] are maintained by storing their mid-points and */
- /* semi-widths in the arrays W and WERR respectively. */
- /* Arguments */
- /* ========= */
- /* N (input) INTEGER */
- /* The order of the matrix. */
- /* D (input) DOUBLE PRECISION array, dimension (N) */
- /* The N diagonal elements of T. */
- /* E2 (input) DOUBLE PRECISION array, dimension (N-1) */
- /* The Squares of the (N-1) subdiagonal elements of T. */
- /* IFIRST (input) INTEGER */
- /* The index of the first eigenvalue to be computed. */
- /* ILAST (input) INTEGER */
- /* The index of the last eigenvalue to be computed. */
- /* RTOL (input) DOUBLE PRECISION */
- /* Tolerance for the convergence of the bisection intervals. */
- /* An interval [LEFT,RIGHT] has converged if */
- /* RIGHT-LEFT.LT.RTOL*MAX(|LEFT|,|RIGHT|). */
- /* OFFSET (input) INTEGER */
- /* Offset for the arrays W and WERR, i.e., the IFIRST-OFFSET */
- /* through ILAST-OFFSET elements of these arrays are to be used. */
- /* W (input/output) DOUBLE PRECISION array, dimension (N) */
- /* On input, W( IFIRST-OFFSET ) through W( ILAST-OFFSET ) are */
- /* estimates of the eigenvalues of L D L^T indexed IFIRST through */
- /* ILAST. */
- /* On output, these estimates are refined. */
- /* WERR (input/output) DOUBLE PRECISION array, dimension (N) */
- /* On input, WERR( IFIRST-OFFSET ) through WERR( ILAST-OFFSET ) are */
- /* the errors in the estimates of the corresponding elements in W. */
- /* On output, these errors are refined. */
- /* WORK (workspace) DOUBLE PRECISION array, dimension (2*N) */
- /* Workspace. */
- /* IWORK (workspace) INTEGER array, dimension (2*N) */
- /* Workspace. */
- /* PIVMIN (input) DOUBLE PRECISION */
- /* The minimum pivot in the Sturm sequence for T. */
- /* SPDIAM (input) DOUBLE PRECISION */
- /* The spectral diameter of T. */
- /* INFO (output) INTEGER */
- /* Error flag. */
- /* Further Details */
- /* =============== */
- /* Based on contributions by */
- /* Beresford Parlett, University of California, Berkeley, USA */
- /* Jim Demmel, University of California, Berkeley, USA */
- /* Inderjit Dhillon, University of Texas, Austin, USA */
- /* Osni Marques, LBNL/NERSC, USA */
- /* Christof Voemel, University of California, Berkeley, USA */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Parameter adjustments */
- --iwork;
- --work;
- --werr;
- --w;
- --e2;
- --d__;
- /* Function Body */
- *info = 0;
- maxitr = (integer) ((log(*spdiam + *pivmin) - log(*pivmin)) / log(2.)) +
- 2;
- /* Initialize unconverged intervals in [ WORK(2*I-1), WORK(2*I) ]. */
- /* The Sturm Count, Count( WORK(2*I-1) ) is arranged to be I-1, while */
- /* Count( WORK(2*I) ) is stored in IWORK( 2*I ). The integer IWORK( 2*I-1 ) */
- /* for an unconverged interval is set to the index of the next unconverged */
- /* interval, and is -1 or 0 for a converged interval. Thus a linked */
- /* list of unconverged intervals is set up. */
- i1 = *ifirst;
- i2 = *ilast;
- /* The number of unconverged intervals */
- nint = 0;
- /* The last unconverged interval found */
- prev = 0;
- i__1 = i2;
- for (i__ = i1; i__ <= i__1; ++i__) {
- k = i__ << 1;
- ii = i__ - *offset;
- left = w[ii] - werr[ii];
- mid = w[ii];
- right = w[ii] + werr[ii];
- width = right - mid;
- /* Computing MAX */
- d__1 = abs(left), d__2 = abs(right);
- tmp = max(d__1,d__2);
- /* The following test prevents the test of converged intervals */
- if (width < *rtol * tmp) {
- /* This interval has already converged and does not need refinement. */
- /* (Note that the gaps might change through refining the */
- /* eigenvalues, however, they can only get bigger.) */
- /* Remove it from the list. */
- iwork[k - 1] = -1;
- /* Make sure that I1 always points to the first unconverged interval */
- if (i__ == i1 && i__ < i2) {
- i1 = i__ + 1;
- }
- if (prev >= i1 && i__ <= i2) {
- iwork[(prev << 1) - 1] = i__ + 1;
- }
- } else {
- /* unconverged interval found */
- prev = i__;
- /* Make sure that [LEFT,RIGHT] contains the desired eigenvalue */
- /* Do while( CNT(LEFT).GT.I-1 ) */
- fac = 1.;
- L20:
- cnt = 0;
- s = left;
- dplus = d__[1] - s;
- if (dplus < 0.) {
- ++cnt;
- }
- i__2 = *n;
- for (j = 2; j <= i__2; ++j) {
- dplus = d__[j] - s - e2[j - 1] / dplus;
- if (dplus < 0.) {
- ++cnt;
- }
- /* L30: */
- }
- if (cnt > i__ - 1) {
- left -= werr[ii] * fac;
- fac *= 2.;
- goto L20;
- }
- /* Do while( CNT(RIGHT).LT.I ) */
- fac = 1.;
- L50:
- cnt = 0;
- s = right;
- dplus = d__[1] - s;
- if (dplus < 0.) {
- ++cnt;
- }
- i__2 = *n;
- for (j = 2; j <= i__2; ++j) {
- dplus = d__[j] - s - e2[j - 1] / dplus;
- if (dplus < 0.) {
- ++cnt;
- }
- /* L60: */
- }
- if (cnt < i__) {
- right += werr[ii] * fac;
- fac *= 2.;
- goto L50;
- }
- ++nint;
- iwork[k - 1] = i__ + 1;
- iwork[k] = cnt;
- }
- work[k - 1] = left;
- work[k] = right;
- /* L75: */
- }
- savi1 = i1;
- /* Do while( NINT.GT.0 ), i.e. there are still unconverged intervals */
- /* and while (ITER.LT.MAXITR) */
- iter = 0;
- L80:
- prev = i1 - 1;
- i__ = i1;
- olnint = nint;
- i__1 = olnint;
- for (p = 1; p <= i__1; ++p) {
- k = i__ << 1;
- ii = i__ - *offset;
- next = iwork[k - 1];
- left = work[k - 1];
- right = work[k];
- mid = (left + right) * .5;
- /* semiwidth of interval */
- width = right - mid;
- /* Computing MAX */
- d__1 = abs(left), d__2 = abs(right);
- tmp = max(d__1,d__2);
- if (width < *rtol * tmp || iter == maxitr) {
- /* reduce number of unconverged intervals */
- --nint;
- /* Mark interval as converged. */
- iwork[k - 1] = 0;
- if (i1 == i__) {
- i1 = next;
- } else {
- /* Prev holds the last unconverged interval previously examined */
- if (prev >= i1) {
- iwork[(prev << 1) - 1] = next;
- }
- }
- i__ = next;
- goto L100;
- }
- prev = i__;
- /* Perform one bisection step */
- cnt = 0;
- s = mid;
- dplus = d__[1] - s;
- if (dplus < 0.) {
- ++cnt;
- }
- i__2 = *n;
- for (j = 2; j <= i__2; ++j) {
- dplus = d__[j] - s - e2[j - 1] / dplus;
- if (dplus < 0.) {
- ++cnt;
- }
- /* L90: */
- }
- if (cnt <= i__ - 1) {
- work[k - 1] = mid;
- } else {
- work[k] = mid;
- }
- i__ = next;
- L100:
- ;
- }
- ++iter;
- /* do another loop if there are still unconverged intervals */
- /* However, in the last iteration, all intervals are accepted */
- /* since this is the best we can do. */
- if (nint > 0 && iter <= maxitr) {
- goto L80;
- }
- /* At this point, all the intervals have converged */
- i__1 = *ilast;
- for (i__ = savi1; i__ <= i__1; ++i__) {
- k = i__ << 1;
- ii = i__ - *offset;
- /* All intervals marked by '0' have been refined. */
- if (iwork[k - 1] == 0) {
- w[ii] = (work[k - 1] + work[k]) * .5;
- werr[ii] = work[k] - w[ii];
- }
- /* L110: */
- }
- return 0;
- /* End of DLARRJ */
- } /* _starpu_dlarrj_ */
|