123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755 |
- /* dlaqr4.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__13 = 13;
- static integer c__15 = 15;
- static integer c_n1 = -1;
- static integer c__12 = 12;
- static integer c__14 = 14;
- static integer c__16 = 16;
- static logical c_false = FALSE_;
- static integer c__1 = 1;
- static integer c__3 = 3;
- /* Subroutine */ int _starpu_dlaqr4_(logical *wantt, logical *wantz, integer *n,
- integer *ilo, integer *ihi, doublereal *h__, integer *ldh, doublereal
- *wr, doublereal *wi, integer *iloz, integer *ihiz, doublereal *z__,
- integer *ldz, doublereal *work, integer *lwork, integer *info)
- {
- /* System generated locals */
- integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5;
- doublereal d__1, d__2, d__3, d__4;
- /* Local variables */
- integer i__, k;
- doublereal aa, bb, cc, dd;
- integer ld;
- doublereal cs;
- integer nh, it, ks, kt;
- doublereal sn;
- integer ku, kv, ls, ns;
- doublereal ss;
- integer nw, inf, kdu, nho, nve, kwh, nsr, nwr, kwv, ndec, ndfl, kbot,
- nmin;
- doublereal swap;
- integer ktop;
- doublereal zdum[1] /* was [1][1] */;
- integer kacc22, itmax, nsmax, nwmax, kwtop;
- extern /* Subroutine */ int _starpu_dlaqr2_(logical *, logical *, integer *,
- integer *, integer *, integer *, doublereal *, integer *, integer
- *, integer *, doublereal *, integer *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, integer *, integer *,
- doublereal *, integer *, integer *, doublereal *, integer *,
- doublereal *, integer *), _starpu_dlanv2_(doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *), _starpu_dlaqr5_(
- logical *, logical *, integer *, integer *, integer *, integer *,
- integer *, doublereal *, doublereal *, doublereal *, integer *,
- integer *, integer *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, integer *, integer *, doublereal *,
- integer *, integer *, doublereal *, integer *);
- integer nibble;
- extern /* Subroutine */ int _starpu_dlahqr_(logical *, logical *, integer *,
- integer *, integer *, doublereal *, integer *, doublereal *,
- doublereal *, integer *, integer *, doublereal *, integer *,
- integer *), _starpu_dlacpy_(char *, integer *, integer *, doublereal *,
- integer *, doublereal *, integer *);
- extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *);
- char jbcmpz[1];
- integer nwupbd;
- logical sorted;
- integer lwkopt;
- /* -- LAPACK auxiliary routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* This subroutine implements one level of recursion for DLAQR0. */
- /* It is a complete implementation of the small bulge multi-shift */
- /* QR algorithm. It may be called by DLAQR0 and, for large enough */
- /* deflation window size, it may be called by DLAQR3. This */
- /* subroutine is identical to DLAQR0 except that it calls DLAQR2 */
- /* instead of DLAQR3. */
- /* Purpose */
- /* ======= */
- /* DLAQR4 computes the eigenvalues of a Hessenberg matrix H */
- /* and, optionally, the matrices T and Z from the Schur decomposition */
- /* H = Z T Z**T, where T is an upper quasi-triangular matrix (the */
- /* Schur form), and Z is the orthogonal matrix of Schur vectors. */
- /* Optionally Z may be postmultiplied into an input orthogonal */
- /* matrix Q so that this routine can give the Schur factorization */
- /* of a matrix A which has been reduced to the Hessenberg form H */
- /* by the orthogonal matrix Q: A = Q*H*Q**T = (QZ)*T*(QZ)**T. */
- /* Arguments */
- /* ========= */
- /* WANTT (input) LOGICAL */
- /* = .TRUE. : the full Schur form T is required; */
- /* = .FALSE.: only eigenvalues are required. */
- /* WANTZ (input) LOGICAL */
- /* = .TRUE. : the matrix of Schur vectors Z is required; */
- /* = .FALSE.: Schur vectors are not required. */
- /* N (input) INTEGER */
- /* The order of the matrix H. N .GE. 0. */
- /* ILO (input) INTEGER */
- /* IHI (input) INTEGER */
- /* It is assumed that H is already upper triangular in rows */
- /* and columns 1:ILO-1 and IHI+1:N and, if ILO.GT.1, */
- /* H(ILO,ILO-1) is zero. ILO and IHI are normally set by a */
- /* previous call to DGEBAL, and then passed to DGEHRD when the */
- /* matrix output by DGEBAL is reduced to Hessenberg form. */
- /* Otherwise, ILO and IHI should be set to 1 and N, */
- /* respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N. */
- /* If N = 0, then ILO = 1 and IHI = 0. */
- /* H (input/output) DOUBLE PRECISION array, dimension (LDH,N) */
- /* On entry, the upper Hessenberg matrix H. */
- /* On exit, if INFO = 0 and WANTT is .TRUE., then H contains */
- /* the upper quasi-triangular matrix T from the Schur */
- /* decomposition (the Schur form); 2-by-2 diagonal blocks */
- /* (corresponding to complex conjugate pairs of eigenvalues) */
- /* are returned in standard form, with H(i,i) = H(i+1,i+1) */
- /* and H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and WANTT is */
- /* .FALSE., then the contents of H are unspecified on exit. */
- /* (The output value of H when INFO.GT.0 is given under the */
- /* description of INFO below.) */
- /* This subroutine may explicitly set H(i,j) = 0 for i.GT.j and */
- /* j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N. */
- /* LDH (input) INTEGER */
- /* The leading dimension of the array H. LDH .GE. max(1,N). */
- /* WR (output) DOUBLE PRECISION array, dimension (IHI) */
- /* WI (output) DOUBLE PRECISION array, dimension (IHI) */
- /* The real and imaginary parts, respectively, of the computed */
- /* eigenvalues of H(ILO:IHI,ILO:IHI) are stored in WR(ILO:IHI) */
- /* and WI(ILO:IHI). If two eigenvalues are computed as a */
- /* complex conjugate pair, they are stored in consecutive */
- /* elements of WR and WI, say the i-th and (i+1)th, with */
- /* WI(i) .GT. 0 and WI(i+1) .LT. 0. If WANTT is .TRUE., then */
- /* the eigenvalues are stored in the same order as on the */
- /* diagonal of the Schur form returned in H, with */
- /* WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal */
- /* block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and */
- /* WI(i+1) = -WI(i). */
- /* ILOZ (input) INTEGER */
- /* IHIZ (input) INTEGER */
- /* Specify the rows of Z to which transformations must be */
- /* applied if WANTZ is .TRUE.. */
- /* 1 .LE. ILOZ .LE. ILO; IHI .LE. IHIZ .LE. N. */
- /* Z (input/output) DOUBLE PRECISION array, dimension (LDZ,IHI) */
- /* If WANTZ is .FALSE., then Z is not referenced. */
- /* If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is */
- /* replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the */
- /* orthogonal Schur factor of H(ILO:IHI,ILO:IHI). */
- /* (The output value of Z when INFO.GT.0 is given under */
- /* the description of INFO below.) */
- /* LDZ (input) INTEGER */
- /* The leading dimension of the array Z. if WANTZ is .TRUE. */
- /* then LDZ.GE.MAX(1,IHIZ). Otherwize, LDZ.GE.1. */
- /* WORK (workspace/output) DOUBLE PRECISION array, dimension LWORK */
- /* On exit, if LWORK = -1, WORK(1) returns an estimate of */
- /* the optimal value for LWORK. */
- /* LWORK (input) INTEGER */
- /* The dimension of the array WORK. LWORK .GE. max(1,N) */
- /* is sufficient, but LWORK typically as large as 6*N may */
- /* be required for optimal performance. A workspace query */
- /* to determine the optimal workspace size is recommended. */
- /* If LWORK = -1, then DLAQR4 does a workspace query. */
- /* In this case, DLAQR4 checks the input parameters and */
- /* estimates the optimal workspace size for the given */
- /* values of N, ILO and IHI. The estimate is returned */
- /* in WORK(1). No error message related to LWORK is */
- /* issued by XERBLA. Neither H nor Z are accessed. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* .GT. 0: if INFO = i, DLAQR4 failed to compute all of */
- /* the eigenvalues. Elements 1:ilo-1 and i+1:n of WR */
- /* and WI contain those eigenvalues which have been */
- /* successfully computed. (Failures are rare.) */
- /* If INFO .GT. 0 and WANT is .FALSE., then on exit, */
- /* the remaining unconverged eigenvalues are the eigen- */
- /* values of the upper Hessenberg matrix rows and */
- /* columns ILO through INFO of the final, output */
- /* value of H. */
- /* If INFO .GT. 0 and WANTT is .TRUE., then on exit */
- /* (*) (initial value of H)*U = U*(final value of H) */
- /* where U is an orthogonal matrix. The final */
- /* value of H is upper Hessenberg and quasi-triangular */
- /* in rows and columns INFO+1 through IHI. */
- /* If INFO .GT. 0 and WANTZ is .TRUE., then on exit */
- /* (final value of Z(ILO:IHI,ILOZ:IHIZ) */
- /* = (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U */
- /* where U is the orthogonal matrix in (*) (regard- */
- /* less of the value of WANTT.) */
- /* If INFO .GT. 0 and WANTZ is .FALSE., then Z is not */
- /* accessed. */
- /* ================================================================ */
- /* Based on contributions by */
- /* Karen Braman and Ralph Byers, Department of Mathematics, */
- /* University of Kansas, USA */
- /* ================================================================ */
- /* References: */
- /* K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
- /* Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 */
- /* Performance, SIAM Journal of Matrix Analysis, volume 23, pages */
- /* 929--947, 2002. */
- /* K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
- /* Algorithm Part II: Aggressive Early Deflation, SIAM Journal */
- /* of Matrix Analysis, volume 23, pages 948--973, 2002. */
- /* ================================================================ */
- /* .. Parameters .. */
- /* ==== Matrices of order NTINY or smaller must be processed by */
- /* . DLAHQR because of insufficient subdiagonal scratch space. */
- /* . (This is a hard limit.) ==== */
- /* ==== Exceptional deflation windows: try to cure rare */
- /* . slow convergence by varying the size of the */
- /* . deflation window after KEXNW iterations. ==== */
- /* ==== Exceptional shifts: try to cure rare slow convergence */
- /* . with ad-hoc exceptional shifts every KEXSH iterations. */
- /* . ==== */
- /* ==== The constants WILK1 and WILK2 are used to form the */
- /* . exceptional shifts. ==== */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. Local Arrays .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Parameter adjustments */
- h_dim1 = *ldh;
- h_offset = 1 + h_dim1;
- h__ -= h_offset;
- --wr;
- --wi;
- z_dim1 = *ldz;
- z_offset = 1 + z_dim1;
- z__ -= z_offset;
- --work;
- /* Function Body */
- *info = 0;
- /* ==== Quick return for N = 0: nothing to do. ==== */
- if (*n == 0) {
- work[1] = 1.;
- return 0;
- }
- if (*n <= 11) {
- /* ==== Tiny matrices must use DLAHQR. ==== */
- lwkopt = 1;
- if (*lwork != -1) {
- _starpu_dlahqr_(wantt, wantz, n, ilo, ihi, &h__[h_offset], ldh, &wr[1], &
- wi[1], iloz, ihiz, &z__[z_offset], ldz, info);
- }
- } else {
- /* ==== Use small bulge multi-shift QR with aggressive early */
- /* . deflation on larger-than-tiny matrices. ==== */
- /* ==== Hope for the best. ==== */
- *info = 0;
- /* ==== Set up job flags for ILAENV. ==== */
- if (*wantt) {
- *(unsigned char *)jbcmpz = 'S';
- } else {
- *(unsigned char *)jbcmpz = 'E';
- }
- if (*wantz) {
- *(unsigned char *)&jbcmpz[1] = 'V';
- } else {
- *(unsigned char *)&jbcmpz[1] = 'N';
- }
- /* ==== NWR = recommended deflation window size. At this */
- /* . point, N .GT. NTINY = 11, so there is enough */
- /* . subdiagonal workspace for NWR.GE.2 as required. */
- /* . (In fact, there is enough subdiagonal space for */
- /* . NWR.GE.3.) ==== */
- nwr = _starpu_ilaenv_(&c__13, "DLAQR4", jbcmpz, n, ilo, ihi, lwork);
- nwr = max(2,nwr);
- /* Computing MIN */
- i__1 = *ihi - *ilo + 1, i__2 = (*n - 1) / 3, i__1 = min(i__1,i__2);
- nwr = min(i__1,nwr);
- /* ==== NSR = recommended number of simultaneous shifts. */
- /* . At this point N .GT. NTINY = 11, so there is at */
- /* . enough subdiagonal workspace for NSR to be even */
- /* . and greater than or equal to two as required. ==== */
- nsr = _starpu_ilaenv_(&c__15, "DLAQR4", jbcmpz, n, ilo, ihi, lwork);
- /* Computing MIN */
- i__1 = nsr, i__2 = (*n + 6) / 9, i__1 = min(i__1,i__2), i__2 = *ihi -
- *ilo;
- nsr = min(i__1,i__2);
- /* Computing MAX */
- i__1 = 2, i__2 = nsr - nsr % 2;
- nsr = max(i__1,i__2);
- /* ==== Estimate optimal workspace ==== */
- /* ==== Workspace query call to DLAQR2 ==== */
- i__1 = nwr + 1;
- _starpu_dlaqr2_(wantt, wantz, n, ilo, ihi, &i__1, &h__[h_offset], ldh, iloz,
- ihiz, &z__[z_offset], ldz, &ls, &ld, &wr[1], &wi[1], &h__[
- h_offset], ldh, n, &h__[h_offset], ldh, n, &h__[h_offset],
- ldh, &work[1], &c_n1);
- /* ==== Optimal workspace = MAX(DLAQR5, DLAQR2) ==== */
- /* Computing MAX */
- i__1 = nsr * 3 / 2, i__2 = (integer) work[1];
- lwkopt = max(i__1,i__2);
- /* ==== Quick return in case of workspace query. ==== */
- if (*lwork == -1) {
- work[1] = (doublereal) lwkopt;
- return 0;
- }
- /* ==== DLAHQR/DLAQR0 crossover point ==== */
- nmin = _starpu_ilaenv_(&c__12, "DLAQR4", jbcmpz, n, ilo, ihi, lwork);
- nmin = max(11,nmin);
- /* ==== Nibble crossover point ==== */
- nibble = _starpu_ilaenv_(&c__14, "DLAQR4", jbcmpz, n, ilo, ihi, lwork);
- nibble = max(0,nibble);
- /* ==== Accumulate reflections during ttswp? Use block */
- /* . 2-by-2 structure during matrix-matrix multiply? ==== */
- kacc22 = _starpu_ilaenv_(&c__16, "DLAQR4", jbcmpz, n, ilo, ihi, lwork);
- kacc22 = max(0,kacc22);
- kacc22 = min(2,kacc22);
- /* ==== NWMAX = the largest possible deflation window for */
- /* . which there is sufficient workspace. ==== */
- /* Computing MIN */
- i__1 = (*n - 1) / 3, i__2 = *lwork / 2;
- nwmax = min(i__1,i__2);
- nw = nwmax;
- /* ==== NSMAX = the Largest number of simultaneous shifts */
- /* . for which there is sufficient workspace. ==== */
- /* Computing MIN */
- i__1 = (*n + 6) / 9, i__2 = (*lwork << 1) / 3;
- nsmax = min(i__1,i__2);
- nsmax -= nsmax % 2;
- /* ==== NDFL: an iteration count restarted at deflation. ==== */
- ndfl = 1;
- /* ==== ITMAX = iteration limit ==== */
- /* Computing MAX */
- i__1 = 10, i__2 = *ihi - *ilo + 1;
- itmax = max(i__1,i__2) * 30;
- /* ==== Last row and column in the active block ==== */
- kbot = *ihi;
- /* ==== Main Loop ==== */
- i__1 = itmax;
- for (it = 1; it <= i__1; ++it) {
- /* ==== Done when KBOT falls below ILO ==== */
- if (kbot < *ilo) {
- goto L90;
- }
- /* ==== Locate active block ==== */
- i__2 = *ilo + 1;
- for (k = kbot; k >= i__2; --k) {
- if (h__[k + (k - 1) * h_dim1] == 0.) {
- goto L20;
- }
- /* L10: */
- }
- k = *ilo;
- L20:
- ktop = k;
- /* ==== Select deflation window size: */
- /* . Typical Case: */
- /* . If possible and advisable, nibble the entire */
- /* . active block. If not, use size MIN(NWR,NWMAX) */
- /* . or MIN(NWR+1,NWMAX) depending upon which has */
- /* . the smaller corresponding subdiagonal entry */
- /* . (a heuristic). */
- /* . */
- /* . Exceptional Case: */
- /* . If there have been no deflations in KEXNW or */
- /* . more iterations, then vary the deflation window */
- /* . size. At first, because, larger windows are, */
- /* . in general, more powerful than smaller ones, */
- /* . rapidly increase the window to the maximum possible. */
- /* . Then, gradually reduce the window size. ==== */
- nh = kbot - ktop + 1;
- nwupbd = min(nh,nwmax);
- if (ndfl < 5) {
- nw = min(nwupbd,nwr);
- } else {
- /* Computing MIN */
- i__2 = nwupbd, i__3 = nw << 1;
- nw = min(i__2,i__3);
- }
- if (nw < nwmax) {
- if (nw >= nh - 1) {
- nw = nh;
- } else {
- kwtop = kbot - nw + 1;
- if ((d__1 = h__[kwtop + (kwtop - 1) * h_dim1], abs(d__1))
- > (d__2 = h__[kwtop - 1 + (kwtop - 2) * h_dim1],
- abs(d__2))) {
- ++nw;
- }
- }
- }
- if (ndfl < 5) {
- ndec = -1;
- } else if (ndec >= 0 || nw >= nwupbd) {
- ++ndec;
- if (nw - ndec < 2) {
- ndec = 0;
- }
- nw -= ndec;
- }
- /* ==== Aggressive early deflation: */
- /* . split workspace under the subdiagonal into */
- /* . - an nw-by-nw work array V in the lower */
- /* . left-hand-corner, */
- /* . - an NW-by-at-least-NW-but-more-is-better */
- /* . (NW-by-NHO) horizontal work array along */
- /* . the bottom edge, */
- /* . - an at-least-NW-but-more-is-better (NHV-by-NW) */
- /* . vertical work array along the left-hand-edge. */
- /* . ==== */
- kv = *n - nw + 1;
- kt = nw + 1;
- nho = *n - nw - 1 - kt + 1;
- kwv = nw + 2;
- nve = *n - nw - kwv + 1;
- /* ==== Aggressive early deflation ==== */
- _starpu_dlaqr2_(wantt, wantz, n, &ktop, &kbot, &nw, &h__[h_offset], ldh,
- iloz, ihiz, &z__[z_offset], ldz, &ls, &ld, &wr[1], &wi[1],
- &h__[kv + h_dim1], ldh, &nho, &h__[kv + kt * h_dim1],
- ldh, &nve, &h__[kwv + h_dim1], ldh, &work[1], lwork);
- /* ==== Adjust KBOT accounting for new deflations. ==== */
- kbot -= ld;
- /* ==== KS points to the shifts. ==== */
- ks = kbot - ls + 1;
- /* ==== Skip an expensive QR sweep if there is a (partly */
- /* . heuristic) reason to expect that many eigenvalues */
- /* . will deflate without it. Here, the QR sweep is */
- /* . skipped if many eigenvalues have just been deflated */
- /* . or if the remaining active block is small. */
- if (ld == 0 || ld * 100 <= nw * nibble && kbot - ktop + 1 > min(
- nmin,nwmax)) {
- /* ==== NS = nominal number of simultaneous shifts. */
- /* . This may be lowered (slightly) if DLAQR2 */
- /* . did not provide that many shifts. ==== */
- /* Computing MIN */
- /* Computing MAX */
- i__4 = 2, i__5 = kbot - ktop;
- i__2 = min(nsmax,nsr), i__3 = max(i__4,i__5);
- ns = min(i__2,i__3);
- ns -= ns % 2;
- /* ==== If there have been no deflations */
- /* . in a multiple of KEXSH iterations, */
- /* . then try exceptional shifts. */
- /* . Otherwise use shifts provided by */
- /* . DLAQR2 above or from the eigenvalues */
- /* . of a trailing principal submatrix. ==== */
- if (ndfl % 6 == 0) {
- ks = kbot - ns + 1;
- /* Computing MAX */
- i__3 = ks + 1, i__4 = ktop + 2;
- i__2 = max(i__3,i__4);
- for (i__ = kbot; i__ >= i__2; i__ += -2) {
- ss = (d__1 = h__[i__ + (i__ - 1) * h_dim1], abs(d__1))
- + (d__2 = h__[i__ - 1 + (i__ - 2) * h_dim1],
- abs(d__2));
- aa = ss * .75 + h__[i__ + i__ * h_dim1];
- bb = ss;
- cc = ss * -.4375;
- dd = aa;
- _starpu_dlanv2_(&aa, &bb, &cc, &dd, &wr[i__ - 1], &wi[i__ - 1]
- , &wr[i__], &wi[i__], &cs, &sn);
- /* L30: */
- }
- if (ks == ktop) {
- wr[ks + 1] = h__[ks + 1 + (ks + 1) * h_dim1];
- wi[ks + 1] = 0.;
- wr[ks] = wr[ks + 1];
- wi[ks] = wi[ks + 1];
- }
- } else {
- /* ==== Got NS/2 or fewer shifts? Use DLAHQR */
- /* . on a trailing principal submatrix to */
- /* . get more. (Since NS.LE.NSMAX.LE.(N+6)/9, */
- /* . there is enough space below the subdiagonal */
- /* . to fit an NS-by-NS scratch array.) ==== */
- if (kbot - ks + 1 <= ns / 2) {
- ks = kbot - ns + 1;
- kt = *n - ns + 1;
- _starpu_dlacpy_("A", &ns, &ns, &h__[ks + ks * h_dim1], ldh, &
- h__[kt + h_dim1], ldh);
- _starpu_dlahqr_(&c_false, &c_false, &ns, &c__1, &ns, &h__[kt
- + h_dim1], ldh, &wr[ks], &wi[ks], &c__1, &
- c__1, zdum, &c__1, &inf);
- ks += inf;
- /* ==== In case of a rare QR failure use */
- /* . eigenvalues of the trailing 2-by-2 */
- /* . principal submatrix. ==== */
- if (ks >= kbot) {
- aa = h__[kbot - 1 + (kbot - 1) * h_dim1];
- cc = h__[kbot + (kbot - 1) * h_dim1];
- bb = h__[kbot - 1 + kbot * h_dim1];
- dd = h__[kbot + kbot * h_dim1];
- _starpu_dlanv2_(&aa, &bb, &cc, &dd, &wr[kbot - 1], &wi[
- kbot - 1], &wr[kbot], &wi[kbot], &cs, &sn)
- ;
- ks = kbot - 1;
- }
- }
- if (kbot - ks + 1 > ns) {
- /* ==== Sort the shifts (Helps a little) */
- /* . Bubble sort keeps complex conjugate */
- /* . pairs together. ==== */
- sorted = FALSE_;
- i__2 = ks + 1;
- for (k = kbot; k >= i__2; --k) {
- if (sorted) {
- goto L60;
- }
- sorted = TRUE_;
- i__3 = k - 1;
- for (i__ = ks; i__ <= i__3; ++i__) {
- if ((d__1 = wr[i__], abs(d__1)) + (d__2 = wi[
- i__], abs(d__2)) < (d__3 = wr[i__ + 1]
- , abs(d__3)) + (d__4 = wi[i__ + 1],
- abs(d__4))) {
- sorted = FALSE_;
- swap = wr[i__];
- wr[i__] = wr[i__ + 1];
- wr[i__ + 1] = swap;
- swap = wi[i__];
- wi[i__] = wi[i__ + 1];
- wi[i__ + 1] = swap;
- }
- /* L40: */
- }
- /* L50: */
- }
- L60:
- ;
- }
- /* ==== Shuffle shifts into pairs of real shifts */
- /* . and pairs of complex conjugate shifts */
- /* . assuming complex conjugate shifts are */
- /* . already adjacent to one another. (Yes, */
- /* . they are.) ==== */
- i__2 = ks + 2;
- for (i__ = kbot; i__ >= i__2; i__ += -2) {
- if (wi[i__] != -wi[i__ - 1]) {
- swap = wr[i__];
- wr[i__] = wr[i__ - 1];
- wr[i__ - 1] = wr[i__ - 2];
- wr[i__ - 2] = swap;
- swap = wi[i__];
- wi[i__] = wi[i__ - 1];
- wi[i__ - 1] = wi[i__ - 2];
- wi[i__ - 2] = swap;
- }
- /* L70: */
- }
- }
- /* ==== If there are only two shifts and both are */
- /* . real, then use only one. ==== */
- if (kbot - ks + 1 == 2) {
- if (wi[kbot] == 0.) {
- if ((d__1 = wr[kbot] - h__[kbot + kbot * h_dim1], abs(
- d__1)) < (d__2 = wr[kbot - 1] - h__[kbot +
- kbot * h_dim1], abs(d__2))) {
- wr[kbot - 1] = wr[kbot];
- } else {
- wr[kbot] = wr[kbot - 1];
- }
- }
- }
- /* ==== Use up to NS of the the smallest magnatiude */
- /* . shifts. If there aren't NS shifts available, */
- /* . then use them all, possibly dropping one to */
- /* . make the number of shifts even. ==== */
- /* Computing MIN */
- i__2 = ns, i__3 = kbot - ks + 1;
- ns = min(i__2,i__3);
- ns -= ns % 2;
- ks = kbot - ns + 1;
- /* ==== Small-bulge multi-shift QR sweep: */
- /* . split workspace under the subdiagonal into */
- /* . - a KDU-by-KDU work array U in the lower */
- /* . left-hand-corner, */
- /* . - a KDU-by-at-least-KDU-but-more-is-better */
- /* . (KDU-by-NHo) horizontal work array WH along */
- /* . the bottom edge, */
- /* . - and an at-least-KDU-but-more-is-better-by-KDU */
- /* . (NVE-by-KDU) vertical work WV arrow along */
- /* . the left-hand-edge. ==== */
- kdu = ns * 3 - 3;
- ku = *n - kdu + 1;
- kwh = kdu + 1;
- nho = *n - kdu - 3 - (kdu + 1) + 1;
- kwv = kdu + 4;
- nve = *n - kdu - kwv + 1;
- /* ==== Small-bulge multi-shift QR sweep ==== */
- _starpu_dlaqr5_(wantt, wantz, &kacc22, n, &ktop, &kbot, &ns, &wr[ks],
- &wi[ks], &h__[h_offset], ldh, iloz, ihiz, &z__[
- z_offset], ldz, &work[1], &c__3, &h__[ku + h_dim1],
- ldh, &nve, &h__[kwv + h_dim1], ldh, &nho, &h__[ku +
- kwh * h_dim1], ldh);
- }
- /* ==== Note progress (or the lack of it). ==== */
- if (ld > 0) {
- ndfl = 1;
- } else {
- ++ndfl;
- }
- /* ==== End of main loop ==== */
- /* L80: */
- }
- /* ==== Iteration limit exceeded. Set INFO to show where */
- /* . the problem occurred and exit. ==== */
- *info = kbot;
- L90:
- ;
- }
- /* ==== Return the optimal value of LWORK. ==== */
- work[1] = (doublereal) lwkopt;
- /* ==== End of DLAQR4 ==== */
- return 0;
- } /* _starpu_dlaqr4_ */
|