123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189 |
- /* dlaqge.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Subroutine */ int _starpu_dlaqge_(integer *m, integer *n, doublereal *a, integer *
- lda, doublereal *r__, doublereal *c__, doublereal *rowcnd, doublereal
- *colcnd, doublereal *amax, char *equed)
- {
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2;
- /* Local variables */
- integer i__, j;
- doublereal cj, large, small;
- extern doublereal _starpu_dlamch_(char *);
- /* -- LAPACK auxiliary routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLAQGE equilibrates a general M by N matrix A using the row and */
- /* column scaling factors in the vectors R and C. */
- /* Arguments */
- /* ========= */
- /* M (input) INTEGER */
- /* The number of rows of the matrix A. M >= 0. */
- /* N (input) INTEGER */
- /* The number of columns of the matrix A. N >= 0. */
- /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
- /* On entry, the M by N matrix A. */
- /* On exit, the equilibrated matrix. See EQUED for the form of */
- /* the equilibrated matrix. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(M,1). */
- /* R (input) DOUBLE PRECISION array, dimension (M) */
- /* The row scale factors for A. */
- /* C (input) DOUBLE PRECISION array, dimension (N) */
- /* The column scale factors for A. */
- /* ROWCND (input) DOUBLE PRECISION */
- /* Ratio of the smallest R(i) to the largest R(i). */
- /* COLCND (input) DOUBLE PRECISION */
- /* Ratio of the smallest C(i) to the largest C(i). */
- /* AMAX (input) DOUBLE PRECISION */
- /* Absolute value of largest matrix entry. */
- /* EQUED (output) CHARACTER*1 */
- /* Specifies the form of equilibration that was done. */
- /* = 'N': No equilibration */
- /* = 'R': Row equilibration, i.e., A has been premultiplied by */
- /* diag(R). */
- /* = 'C': Column equilibration, i.e., A has been postmultiplied */
- /* by diag(C). */
- /* = 'B': Both row and column equilibration, i.e., A has been */
- /* replaced by diag(R) * A * diag(C). */
- /* Internal Parameters */
- /* =================== */
- /* THRESH is a threshold value used to decide if row or column scaling */
- /* should be done based on the ratio of the row or column scaling */
- /* factors. If ROWCND < THRESH, row scaling is done, and if */
- /* COLCND < THRESH, column scaling is done. */
- /* LARGE and SMALL are threshold values used to decide if row scaling */
- /* should be done based on the absolute size of the largest matrix */
- /* element. If AMAX > LARGE or AMAX < SMALL, row scaling is done. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Quick return if possible */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- --r__;
- --c__;
- /* Function Body */
- if (*m <= 0 || *n <= 0) {
- *(unsigned char *)equed = 'N';
- return 0;
- }
- /* Initialize LARGE and SMALL. */
- small = _starpu_dlamch_("Safe minimum") / _starpu_dlamch_("Precision");
- large = 1. / small;
- if (*rowcnd >= .1 && *amax >= small && *amax <= large) {
- /* No row scaling */
- if (*colcnd >= .1) {
- /* No column scaling */
- *(unsigned char *)equed = 'N';
- } else {
- /* Column scaling */
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- cj = c__[j];
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] = cj * a[i__ + j * a_dim1];
- /* L10: */
- }
- /* L20: */
- }
- *(unsigned char *)equed = 'C';
- }
- } else if (*colcnd >= .1) {
- /* Row scaling, no column scaling */
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] = r__[i__] * a[i__ + j * a_dim1];
- /* L30: */
- }
- /* L40: */
- }
- *(unsigned char *)equed = 'R';
- } else {
- /* Row and column scaling */
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- cj = c__[j];
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- a[i__ + j * a_dim1] = cj * r__[i__] * a[i__ + j * a_dim1];
- /* L50: */
- }
- /* L60: */
- }
- *(unsigned char *)equed = 'B';
- }
- return 0;
- /* End of DLAQGE */
- } /* _starpu_dlaqge_ */
|