123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236 |
- /* dlanv2.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static doublereal c_b4 = 1.;
- /* Subroutine */ int _starpu_dlanv2_(doublereal *a, doublereal *b, doublereal *c__,
- doublereal *d__, doublereal *rt1r, doublereal *rt1i, doublereal *rt2r,
- doublereal *rt2i, doublereal *cs, doublereal *sn)
- {
- /* System generated locals */
- doublereal d__1, d__2;
- /* Builtin functions */
- double d_sign(doublereal *, doublereal *), sqrt(doublereal);
- /* Local variables */
- doublereal p, z__, aa, bb, cc, dd, cs1, sn1, sab, sac, eps, tau, temp,
- scale, bcmax, bcmis, sigma;
- extern doublereal _starpu_dlapy2_(doublereal *, doublereal *), _starpu_dlamch_(char *);
- /* -- LAPACK driver routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric */
- /* matrix in standard form: */
- /* [ A B ] = [ CS -SN ] [ AA BB ] [ CS SN ] */
- /* [ C D ] [ SN CS ] [ CC DD ] [-SN CS ] */
- /* where either */
- /* 1) CC = 0 so that AA and DD are real eigenvalues of the matrix, or */
- /* 2) AA = DD and BB*CC < 0, so that AA + or - sqrt(BB*CC) are complex */
- /* conjugate eigenvalues. */
- /* Arguments */
- /* ========= */
- /* A (input/output) DOUBLE PRECISION */
- /* B (input/output) DOUBLE PRECISION */
- /* C (input/output) DOUBLE PRECISION */
- /* D (input/output) DOUBLE PRECISION */
- /* On entry, the elements of the input matrix. */
- /* On exit, they are overwritten by the elements of the */
- /* standardised Schur form. */
- /* RT1R (output) DOUBLE PRECISION */
- /* RT1I (output) DOUBLE PRECISION */
- /* RT2R (output) DOUBLE PRECISION */
- /* RT2I (output) DOUBLE PRECISION */
- /* The real and imaginary parts of the eigenvalues. If the */
- /* eigenvalues are a complex conjugate pair, RT1I > 0. */
- /* CS (output) DOUBLE PRECISION */
- /* SN (output) DOUBLE PRECISION */
- /* Parameters of the rotation matrix. */
- /* Further Details */
- /* =============== */
- /* Modified by V. Sima, Research Institute for Informatics, Bucharest, */
- /* Romania, to reduce the risk of cancellation errors, */
- /* when computing real eigenvalues, and to ensure, if possible, that */
- /* abs(RT1R) >= abs(RT2R). */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- eps = _starpu_dlamch_("P");
- if (*c__ == 0.) {
- *cs = 1.;
- *sn = 0.;
- goto L10;
- } else if (*b == 0.) {
- /* Swap rows and columns */
- *cs = 0.;
- *sn = 1.;
- temp = *d__;
- *d__ = *a;
- *a = temp;
- *b = -(*c__);
- *c__ = 0.;
- goto L10;
- } else if (*a - *d__ == 0. && d_sign(&c_b4, b) != d_sign(&c_b4, c__)) {
- *cs = 1.;
- *sn = 0.;
- goto L10;
- } else {
- temp = *a - *d__;
- p = temp * .5;
- /* Computing MAX */
- d__1 = abs(*b), d__2 = abs(*c__);
- bcmax = max(d__1,d__2);
- /* Computing MIN */
- d__1 = abs(*b), d__2 = abs(*c__);
- bcmis = min(d__1,d__2) * d_sign(&c_b4, b) * d_sign(&c_b4, c__);
- /* Computing MAX */
- d__1 = abs(p);
- scale = max(d__1,bcmax);
- z__ = p / scale * p + bcmax / scale * bcmis;
- /* If Z is of the order of the machine accuracy, postpone the */
- /* decision on the nature of eigenvalues */
- if (z__ >= eps * 4.) {
- /* Real eigenvalues. Compute A and D. */
- d__1 = sqrt(scale) * sqrt(z__);
- z__ = p + d_sign(&d__1, &p);
- *a = *d__ + z__;
- *d__ -= bcmax / z__ * bcmis;
- /* Compute B and the rotation matrix */
- tau = _starpu_dlapy2_(c__, &z__);
- *cs = z__ / tau;
- *sn = *c__ / tau;
- *b -= *c__;
- *c__ = 0.;
- } else {
- /* Complex eigenvalues, or real (almost) equal eigenvalues. */
- /* Make diagonal elements equal. */
- sigma = *b + *c__;
- tau = _starpu_dlapy2_(&sigma, &temp);
- *cs = sqrt((abs(sigma) / tau + 1.) * .5);
- *sn = -(p / (tau * *cs)) * d_sign(&c_b4, &sigma);
- /* Compute [ AA BB ] = [ A B ] [ CS -SN ] */
- /* [ CC DD ] [ C D ] [ SN CS ] */
- aa = *a * *cs + *b * *sn;
- bb = -(*a) * *sn + *b * *cs;
- cc = *c__ * *cs + *d__ * *sn;
- dd = -(*c__) * *sn + *d__ * *cs;
- /* Compute [ A B ] = [ CS SN ] [ AA BB ] */
- /* [ C D ] [-SN CS ] [ CC DD ] */
- *a = aa * *cs + cc * *sn;
- *b = bb * *cs + dd * *sn;
- *c__ = -aa * *sn + cc * *cs;
- *d__ = -bb * *sn + dd * *cs;
- temp = (*a + *d__) * .5;
- *a = temp;
- *d__ = temp;
- if (*c__ != 0.) {
- if (*b != 0.) {
- if (d_sign(&c_b4, b) == d_sign(&c_b4, c__)) {
- /* Real eigenvalues: reduce to upper triangular form */
- sab = sqrt((abs(*b)));
- sac = sqrt((abs(*c__)));
- d__1 = sab * sac;
- p = d_sign(&d__1, c__);
- tau = 1. / sqrt((d__1 = *b + *c__, abs(d__1)));
- *a = temp + p;
- *d__ = temp - p;
- *b -= *c__;
- *c__ = 0.;
- cs1 = sab * tau;
- sn1 = sac * tau;
- temp = *cs * cs1 - *sn * sn1;
- *sn = *cs * sn1 + *sn * cs1;
- *cs = temp;
- }
- } else {
- *b = -(*c__);
- *c__ = 0.;
- temp = *cs;
- *cs = -(*sn);
- *sn = temp;
- }
- }
- }
- }
- L10:
- /* Store eigenvalues in (RT1R,RT1I) and (RT2R,RT2I). */
- *rt1r = *a;
- *rt2r = *d__;
- if (*c__ == 0.) {
- *rt1i = 0.;
- *rt2i = 0.;
- } else {
- *rt1i = sqrt((abs(*b))) * sqrt((abs(*c__)));
- *rt2i = -(*rt1i);
- }
- return 0;
- /* End of DLANV2 */
- } /* _starpu_dlanv2_ */
|