dlantb.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435
  1. /* dlantb.f -- translated by f2c (version 20061008).
  2. You must link the resulting object file with libf2c:
  3. on Microsoft Windows system, link with libf2c.lib;
  4. on Linux or Unix systems, link with .../path/to/libf2c.a -lm
  5. or, if you install libf2c.a in a standard place, with -lf2c -lm
  6. -- in that order, at the end of the command line, as in
  7. cc *.o -lf2c -lm
  8. Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
  9. http://www.netlib.org/f2c/libf2c.zip
  10. */
  11. #include "f2c.h"
  12. #include "blaswrap.h"
  13. /* Table of constant values */
  14. static integer c__1 = 1;
  15. doublereal _starpu_dlantb_(char *norm, char *uplo, char *diag, integer *n, integer *k,
  16. doublereal *ab, integer *ldab, doublereal *work)
  17. {
  18. /* System generated locals */
  19. integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5;
  20. doublereal ret_val, d__1, d__2, d__3;
  21. /* Builtin functions */
  22. double sqrt(doublereal);
  23. /* Local variables */
  24. integer i__, j, l;
  25. doublereal sum, scale;
  26. logical udiag;
  27. extern logical _starpu_lsame_(char *, char *);
  28. doublereal value;
  29. extern /* Subroutine */ int _starpu_dlassq_(integer *, doublereal *, integer *,
  30. doublereal *, doublereal *);
  31. /* -- LAPACK auxiliary routine (version 3.2) -- */
  32. /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
  33. /* November 2006 */
  34. /* .. Scalar Arguments .. */
  35. /* .. */
  36. /* .. Array Arguments .. */
  37. /* .. */
  38. /* Purpose */
  39. /* ======= */
  40. /* DLANTB returns the value of the one norm, or the Frobenius norm, or */
  41. /* the infinity norm, or the element of largest absolute value of an */
  42. /* n by n triangular band matrix A, with ( k + 1 ) diagonals. */
  43. /* Description */
  44. /* =========== */
  45. /* DLANTB returns the value */
  46. /* DLANTB = ( max(abs(A(i,j))), NORM = 'M' or 'm' */
  47. /* ( */
  48. /* ( norm1(A), NORM = '1', 'O' or 'o' */
  49. /* ( */
  50. /* ( normI(A), NORM = 'I' or 'i' */
  51. /* ( */
  52. /* ( normF(A), NORM = 'F', 'f', 'E' or 'e' */
  53. /* where norm1 denotes the one norm of a matrix (maximum column sum), */
  54. /* normI denotes the infinity norm of a matrix (maximum row sum) and */
  55. /* normF denotes the Frobenius norm of a matrix (square root of sum of */
  56. /* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. */
  57. /* Arguments */
  58. /* ========= */
  59. /* NORM (input) CHARACTER*1 */
  60. /* Specifies the value to be returned in DLANTB as described */
  61. /* above. */
  62. /* UPLO (input) CHARACTER*1 */
  63. /* Specifies whether the matrix A is upper or lower triangular. */
  64. /* = 'U': Upper triangular */
  65. /* = 'L': Lower triangular */
  66. /* DIAG (input) CHARACTER*1 */
  67. /* Specifies whether or not the matrix A is unit triangular. */
  68. /* = 'N': Non-unit triangular */
  69. /* = 'U': Unit triangular */
  70. /* N (input) INTEGER */
  71. /* The order of the matrix A. N >= 0. When N = 0, DLANTB is */
  72. /* set to zero. */
  73. /* K (input) INTEGER */
  74. /* The number of super-diagonals of the matrix A if UPLO = 'U', */
  75. /* or the number of sub-diagonals of the matrix A if UPLO = 'L'. */
  76. /* K >= 0. */
  77. /* AB (input) DOUBLE PRECISION array, dimension (LDAB,N) */
  78. /* The upper or lower triangular band matrix A, stored in the */
  79. /* first k+1 rows of AB. The j-th column of A is stored */
  80. /* in the j-th column of the array AB as follows: */
  81. /* if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j; */
  82. /* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k). */
  83. /* Note that when DIAG = 'U', the elements of the array AB */
  84. /* corresponding to the diagonal elements of the matrix A are */
  85. /* not referenced, but are assumed to be one. */
  86. /* LDAB (input) INTEGER */
  87. /* The leading dimension of the array AB. LDAB >= K+1. */
  88. /* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)), */
  89. /* where LWORK >= N when NORM = 'I'; otherwise, WORK is not */
  90. /* referenced. */
  91. /* ===================================================================== */
  92. /* .. Parameters .. */
  93. /* .. */
  94. /* .. Local Scalars .. */
  95. /* .. */
  96. /* .. External Subroutines .. */
  97. /* .. */
  98. /* .. External Functions .. */
  99. /* .. */
  100. /* .. Intrinsic Functions .. */
  101. /* .. */
  102. /* .. Executable Statements .. */
  103. /* Parameter adjustments */
  104. ab_dim1 = *ldab;
  105. ab_offset = 1 + ab_dim1;
  106. ab -= ab_offset;
  107. --work;
  108. /* Function Body */
  109. if (*n == 0) {
  110. value = 0.;
  111. } else if (_starpu_lsame_(norm, "M")) {
  112. /* Find max(abs(A(i,j))). */
  113. if (_starpu_lsame_(diag, "U")) {
  114. value = 1.;
  115. if (_starpu_lsame_(uplo, "U")) {
  116. i__1 = *n;
  117. for (j = 1; j <= i__1; ++j) {
  118. /* Computing MAX */
  119. i__2 = *k + 2 - j;
  120. i__3 = *k;
  121. for (i__ = max(i__2,1); i__ <= i__3; ++i__) {
  122. /* Computing MAX */
  123. d__2 = value, d__3 = (d__1 = ab[i__ + j * ab_dim1],
  124. abs(d__1));
  125. value = max(d__2,d__3);
  126. /* L10: */
  127. }
  128. /* L20: */
  129. }
  130. } else {
  131. i__1 = *n;
  132. for (j = 1; j <= i__1; ++j) {
  133. /* Computing MIN */
  134. i__2 = *n + 1 - j, i__4 = *k + 1;
  135. i__3 = min(i__2,i__4);
  136. for (i__ = 2; i__ <= i__3; ++i__) {
  137. /* Computing MAX */
  138. d__2 = value, d__3 = (d__1 = ab[i__ + j * ab_dim1],
  139. abs(d__1));
  140. value = max(d__2,d__3);
  141. /* L30: */
  142. }
  143. /* L40: */
  144. }
  145. }
  146. } else {
  147. value = 0.;
  148. if (_starpu_lsame_(uplo, "U")) {
  149. i__1 = *n;
  150. for (j = 1; j <= i__1; ++j) {
  151. /* Computing MAX */
  152. i__3 = *k + 2 - j;
  153. i__2 = *k + 1;
  154. for (i__ = max(i__3,1); i__ <= i__2; ++i__) {
  155. /* Computing MAX */
  156. d__2 = value, d__3 = (d__1 = ab[i__ + j * ab_dim1],
  157. abs(d__1));
  158. value = max(d__2,d__3);
  159. /* L50: */
  160. }
  161. /* L60: */
  162. }
  163. } else {
  164. i__1 = *n;
  165. for (j = 1; j <= i__1; ++j) {
  166. /* Computing MIN */
  167. i__3 = *n + 1 - j, i__4 = *k + 1;
  168. i__2 = min(i__3,i__4);
  169. for (i__ = 1; i__ <= i__2; ++i__) {
  170. /* Computing MAX */
  171. d__2 = value, d__3 = (d__1 = ab[i__ + j * ab_dim1],
  172. abs(d__1));
  173. value = max(d__2,d__3);
  174. /* L70: */
  175. }
  176. /* L80: */
  177. }
  178. }
  179. }
  180. } else if (_starpu_lsame_(norm, "O") || *(unsigned char *)
  181. norm == '1') {
  182. /* Find norm1(A). */
  183. value = 0.;
  184. udiag = _starpu_lsame_(diag, "U");
  185. if (_starpu_lsame_(uplo, "U")) {
  186. i__1 = *n;
  187. for (j = 1; j <= i__1; ++j) {
  188. if (udiag) {
  189. sum = 1.;
  190. /* Computing MAX */
  191. i__2 = *k + 2 - j;
  192. i__3 = *k;
  193. for (i__ = max(i__2,1); i__ <= i__3; ++i__) {
  194. sum += (d__1 = ab[i__ + j * ab_dim1], abs(d__1));
  195. /* L90: */
  196. }
  197. } else {
  198. sum = 0.;
  199. /* Computing MAX */
  200. i__3 = *k + 2 - j;
  201. i__2 = *k + 1;
  202. for (i__ = max(i__3,1); i__ <= i__2; ++i__) {
  203. sum += (d__1 = ab[i__ + j * ab_dim1], abs(d__1));
  204. /* L100: */
  205. }
  206. }
  207. value = max(value,sum);
  208. /* L110: */
  209. }
  210. } else {
  211. i__1 = *n;
  212. for (j = 1; j <= i__1; ++j) {
  213. if (udiag) {
  214. sum = 1.;
  215. /* Computing MIN */
  216. i__3 = *n + 1 - j, i__4 = *k + 1;
  217. i__2 = min(i__3,i__4);
  218. for (i__ = 2; i__ <= i__2; ++i__) {
  219. sum += (d__1 = ab[i__ + j * ab_dim1], abs(d__1));
  220. /* L120: */
  221. }
  222. } else {
  223. sum = 0.;
  224. /* Computing MIN */
  225. i__3 = *n + 1 - j, i__4 = *k + 1;
  226. i__2 = min(i__3,i__4);
  227. for (i__ = 1; i__ <= i__2; ++i__) {
  228. sum += (d__1 = ab[i__ + j * ab_dim1], abs(d__1));
  229. /* L130: */
  230. }
  231. }
  232. value = max(value,sum);
  233. /* L140: */
  234. }
  235. }
  236. } else if (_starpu_lsame_(norm, "I")) {
  237. /* Find normI(A). */
  238. value = 0.;
  239. if (_starpu_lsame_(uplo, "U")) {
  240. if (_starpu_lsame_(diag, "U")) {
  241. i__1 = *n;
  242. for (i__ = 1; i__ <= i__1; ++i__) {
  243. work[i__] = 1.;
  244. /* L150: */
  245. }
  246. i__1 = *n;
  247. for (j = 1; j <= i__1; ++j) {
  248. l = *k + 1 - j;
  249. /* Computing MAX */
  250. i__2 = 1, i__3 = j - *k;
  251. i__4 = j - 1;
  252. for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
  253. work[i__] += (d__1 = ab[l + i__ + j * ab_dim1], abs(
  254. d__1));
  255. /* L160: */
  256. }
  257. /* L170: */
  258. }
  259. } else {
  260. i__1 = *n;
  261. for (i__ = 1; i__ <= i__1; ++i__) {
  262. work[i__] = 0.;
  263. /* L180: */
  264. }
  265. i__1 = *n;
  266. for (j = 1; j <= i__1; ++j) {
  267. l = *k + 1 - j;
  268. /* Computing MAX */
  269. i__4 = 1, i__2 = j - *k;
  270. i__3 = j;
  271. for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
  272. work[i__] += (d__1 = ab[l + i__ + j * ab_dim1], abs(
  273. d__1));
  274. /* L190: */
  275. }
  276. /* L200: */
  277. }
  278. }
  279. } else {
  280. if (_starpu_lsame_(diag, "U")) {
  281. i__1 = *n;
  282. for (i__ = 1; i__ <= i__1; ++i__) {
  283. work[i__] = 1.;
  284. /* L210: */
  285. }
  286. i__1 = *n;
  287. for (j = 1; j <= i__1; ++j) {
  288. l = 1 - j;
  289. /* Computing MIN */
  290. i__4 = *n, i__2 = j + *k;
  291. i__3 = min(i__4,i__2);
  292. for (i__ = j + 1; i__ <= i__3; ++i__) {
  293. work[i__] += (d__1 = ab[l + i__ + j * ab_dim1], abs(
  294. d__1));
  295. /* L220: */
  296. }
  297. /* L230: */
  298. }
  299. } else {
  300. i__1 = *n;
  301. for (i__ = 1; i__ <= i__1; ++i__) {
  302. work[i__] = 0.;
  303. /* L240: */
  304. }
  305. i__1 = *n;
  306. for (j = 1; j <= i__1; ++j) {
  307. l = 1 - j;
  308. /* Computing MIN */
  309. i__4 = *n, i__2 = j + *k;
  310. i__3 = min(i__4,i__2);
  311. for (i__ = j; i__ <= i__3; ++i__) {
  312. work[i__] += (d__1 = ab[l + i__ + j * ab_dim1], abs(
  313. d__1));
  314. /* L250: */
  315. }
  316. /* L260: */
  317. }
  318. }
  319. }
  320. i__1 = *n;
  321. for (i__ = 1; i__ <= i__1; ++i__) {
  322. /* Computing MAX */
  323. d__1 = value, d__2 = work[i__];
  324. value = max(d__1,d__2);
  325. /* L270: */
  326. }
  327. } else if (_starpu_lsame_(norm, "F") || _starpu_lsame_(norm, "E")) {
  328. /* Find normF(A). */
  329. if (_starpu_lsame_(uplo, "U")) {
  330. if (_starpu_lsame_(diag, "U")) {
  331. scale = 1.;
  332. sum = (doublereal) (*n);
  333. if (*k > 0) {
  334. i__1 = *n;
  335. for (j = 2; j <= i__1; ++j) {
  336. /* Computing MIN */
  337. i__4 = j - 1;
  338. i__3 = min(i__4,*k);
  339. /* Computing MAX */
  340. i__2 = *k + 2 - j;
  341. _starpu_dlassq_(&i__3, &ab[max(i__2, 1)+ j * ab_dim1], &c__1,
  342. &scale, &sum);
  343. /* L280: */
  344. }
  345. }
  346. } else {
  347. scale = 0.;
  348. sum = 1.;
  349. i__1 = *n;
  350. for (j = 1; j <= i__1; ++j) {
  351. /* Computing MIN */
  352. i__4 = j, i__2 = *k + 1;
  353. i__3 = min(i__4,i__2);
  354. /* Computing MAX */
  355. i__5 = *k + 2 - j;
  356. _starpu_dlassq_(&i__3, &ab[max(i__5, 1)+ j * ab_dim1], &c__1, &
  357. scale, &sum);
  358. /* L290: */
  359. }
  360. }
  361. } else {
  362. if (_starpu_lsame_(diag, "U")) {
  363. scale = 1.;
  364. sum = (doublereal) (*n);
  365. if (*k > 0) {
  366. i__1 = *n - 1;
  367. for (j = 1; j <= i__1; ++j) {
  368. /* Computing MIN */
  369. i__4 = *n - j;
  370. i__3 = min(i__4,*k);
  371. _starpu_dlassq_(&i__3, &ab[j * ab_dim1 + 2], &c__1, &scale, &
  372. sum);
  373. /* L300: */
  374. }
  375. }
  376. } else {
  377. scale = 0.;
  378. sum = 1.;
  379. i__1 = *n;
  380. for (j = 1; j <= i__1; ++j) {
  381. /* Computing MIN */
  382. i__4 = *n - j + 1, i__2 = *k + 1;
  383. i__3 = min(i__4,i__2);
  384. _starpu_dlassq_(&i__3, &ab[j * ab_dim1 + 1], &c__1, &scale, &sum);
  385. /* L310: */
  386. }
  387. }
  388. }
  389. value = scale * sqrt(sum);
  390. }
  391. ret_val = value;
  392. return ret_val;
  393. /* End of DLANTB */
  394. } /* _starpu_dlantb_ */