123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167 |
- /* dlanst.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- doublereal _starpu_dlanst_(char *norm, integer *n, doublereal *d__, doublereal *e)
- {
- /* System generated locals */
- integer i__1;
- doublereal ret_val, d__1, d__2, d__3, d__4, d__5;
- /* Builtin functions */
- double sqrt(doublereal);
- /* Local variables */
- integer i__;
- doublereal sum, scale;
- extern logical _starpu_lsame_(char *, char *);
- doublereal anorm;
- extern /* Subroutine */ int _starpu_dlassq_(integer *, doublereal *, integer *,
- doublereal *, doublereal *);
- /* -- LAPACK auxiliary routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLANST returns the value of the one norm, or the Frobenius norm, or */
- /* the infinity norm, or the element of largest absolute value of a */
- /* real symmetric tridiagonal matrix A. */
- /* Description */
- /* =========== */
- /* DLANST returns the value */
- /* DLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm' */
- /* ( */
- /* ( norm1(A), NORM = '1', 'O' or 'o' */
- /* ( */
- /* ( normI(A), NORM = 'I' or 'i' */
- /* ( */
- /* ( normF(A), NORM = 'F', 'f', 'E' or 'e' */
- /* where norm1 denotes the one norm of a matrix (maximum column sum), */
- /* normI denotes the infinity norm of a matrix (maximum row sum) and */
- /* normF denotes the Frobenius norm of a matrix (square root of sum of */
- /* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. */
- /* Arguments */
- /* ========= */
- /* NORM (input) CHARACTER*1 */
- /* Specifies the value to be returned in DLANST as described */
- /* above. */
- /* N (input) INTEGER */
- /* The order of the matrix A. N >= 0. When N = 0, DLANST is */
- /* set to zero. */
- /* D (input) DOUBLE PRECISION array, dimension (N) */
- /* The diagonal elements of A. */
- /* E (input) DOUBLE PRECISION array, dimension (N-1) */
- /* The (n-1) sub-diagonal or super-diagonal elements of A. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Parameter adjustments */
- --e;
- --d__;
- /* Function Body */
- if (*n <= 0) {
- anorm = 0.;
- } else if (_starpu_lsame_(norm, "M")) {
- /* Find max(abs(A(i,j))). */
- anorm = (d__1 = d__[*n], abs(d__1));
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- /* Computing MAX */
- d__2 = anorm, d__3 = (d__1 = d__[i__], abs(d__1));
- anorm = max(d__2,d__3);
- /* Computing MAX */
- d__2 = anorm, d__3 = (d__1 = e[i__], abs(d__1));
- anorm = max(d__2,d__3);
- /* L10: */
- }
- } else if (_starpu_lsame_(norm, "O") || *(unsigned char *)
- norm == '1' || _starpu_lsame_(norm, "I")) {
- /* Find norm1(A). */
- if (*n == 1) {
- anorm = abs(d__[1]);
- } else {
- /* Computing MAX */
- d__3 = abs(d__[1]) + abs(e[1]), d__4 = (d__1 = e[*n - 1], abs(
- d__1)) + (d__2 = d__[*n], abs(d__2));
- anorm = max(d__3,d__4);
- i__1 = *n - 1;
- for (i__ = 2; i__ <= i__1; ++i__) {
- /* Computing MAX */
- d__4 = anorm, d__5 = (d__1 = d__[i__], abs(d__1)) + (d__2 = e[
- i__], abs(d__2)) + (d__3 = e[i__ - 1], abs(d__3));
- anorm = max(d__4,d__5);
- /* L20: */
- }
- }
- } else if (_starpu_lsame_(norm, "F") || _starpu_lsame_(norm, "E")) {
- /* Find normF(A). */
- scale = 0.;
- sum = 1.;
- if (*n > 1) {
- i__1 = *n - 1;
- _starpu_dlassq_(&i__1, &e[1], &c__1, &scale, &sum);
- sum *= 2;
- }
- _starpu_dlassq_(n, &d__[1], &c__1, &scale, &sum);
- anorm = scale * sqrt(sum);
- }
- ret_val = anorm;
- return ret_val;
- /* End of DLANST */
- } /* _starpu_dlanst_ */
|