12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013 |
- /* dlansf.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- doublereal _starpu_dlansf_(char *norm, char *transr, char *uplo, integer *n,
- doublereal *a, doublereal *work)
- {
- /* System generated locals */
- integer i__1, i__2;
- doublereal ret_val, d__1, d__2, d__3;
- /* Builtin functions */
- double sqrt(doublereal);
- /* Local variables */
- integer i__, j, k, l;
- doublereal s;
- integer n1;
- doublereal aa;
- integer lda, ifm, noe, ilu;
- doublereal scale;
- extern logical _starpu_lsame_(char *, char *);
- doublereal value;
- extern integer _starpu_idamax_(integer *, doublereal *, integer *);
- extern /* Subroutine */ int _starpu_dlassq_(integer *, doublereal *, integer *,
- doublereal *, doublereal *);
- /* -- LAPACK routine (version 3.2) -- */
- /* -- Contributed by Fred Gustavson of the IBM Watson Research Center -- */
- /* -- November 2008 -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLANSF returns the value of the one norm, or the Frobenius norm, or */
- /* the infinity norm, or the element of largest absolute value of a */
- /* real symmetric matrix A in RFP format. */
- /* Description */
- /* =========== */
- /* DLANSF returns the value */
- /* DLANSF = ( max(abs(A(i,j))), NORM = 'M' or 'm' */
- /* ( */
- /* ( norm1(A), NORM = '1', 'O' or 'o' */
- /* ( */
- /* ( normI(A), NORM = 'I' or 'i' */
- /* ( */
- /* ( normF(A), NORM = 'F', 'f', 'E' or 'e' */
- /* where norm1 denotes the one norm of a matrix (maximum column sum), */
- /* normI denotes the infinity norm of a matrix (maximum row sum) and */
- /* normF denotes the Frobenius norm of a matrix (square root of sum of */
- /* squares). Note that max(abs(A(i,j))) is not a matrix norm. */
- /* Arguments */
- /* ========= */
- /* NORM (input) CHARACTER */
- /* Specifies the value to be returned in DLANSF as described */
- /* above. */
- /* TRANSR (input) CHARACTER */
- /* Specifies whether the RFP format of A is normal or */
- /* transposed format. */
- /* = 'N': RFP format is Normal; */
- /* = 'T': RFP format is Transpose. */
- /* UPLO (input) CHARACTER */
- /* On entry, UPLO specifies whether the RFP matrix A came from */
- /* an upper or lower triangular matrix as follows: */
- /* = 'U': RFP A came from an upper triangular matrix; */
- /* = 'L': RFP A came from a lower triangular matrix. */
- /* N (input) INTEGER */
- /* The order of the matrix A. N >= 0. When N = 0, DLANSF is */
- /* set to zero. */
- /* A (input) DOUBLE PRECISION array, dimension ( N*(N+1)/2 ); */
- /* On entry, the upper (if UPLO = 'U') or lower (if UPLO = 'L') */
- /* part of the symmetric matrix A stored in RFP format. See the */
- /* "Notes" below for more details. */
- /* Unchanged on exit. */
- /* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)), */
- /* where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, */
- /* WORK is not referenced. */
- /* Notes */
- /* ===== */
- /* We first consider Rectangular Full Packed (RFP) Format when N is */
- /* even. We give an example where N = 6. */
- /* AP is Upper AP is Lower */
- /* 00 01 02 03 04 05 00 */
- /* 11 12 13 14 15 10 11 */
- /* 22 23 24 25 20 21 22 */
- /* 33 34 35 30 31 32 33 */
- /* 44 45 40 41 42 43 44 */
- /* 55 50 51 52 53 54 55 */
- /* Let TRANSR = 'N'. RFP holds AP as follows: */
- /* For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */
- /* three columns of AP upper. The lower triangle A(4:6,0:2) consists of */
- /* the transpose of the first three columns of AP upper. */
- /* For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */
- /* three columns of AP lower. The upper triangle A(0:2,0:2) consists of */
- /* the transpose of the last three columns of AP lower. */
- /* This covers the case N even and TRANSR = 'N'. */
- /* RFP A RFP A */
- /* 03 04 05 33 43 53 */
- /* 13 14 15 00 44 54 */
- /* 23 24 25 10 11 55 */
- /* 33 34 35 20 21 22 */
- /* 00 44 45 30 31 32 */
- /* 01 11 55 40 41 42 */
- /* 02 12 22 50 51 52 */
- /* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
- /* transpose of RFP A above. One therefore gets: */
- /* RFP A RFP A */
- /* 03 13 23 33 00 01 02 33 00 10 20 30 40 50 */
- /* 04 14 24 34 44 11 12 43 44 11 21 31 41 51 */
- /* 05 15 25 35 45 55 22 53 54 55 22 32 42 52 */
- /* We first consider Rectangular Full Packed (RFP) Format when N is */
- /* odd. We give an example where N = 5. */
- /* AP is Upper AP is Lower */
- /* 00 01 02 03 04 00 */
- /* 11 12 13 14 10 11 */
- /* 22 23 24 20 21 22 */
- /* 33 34 30 31 32 33 */
- /* 44 40 41 42 43 44 */
- /* Let TRANSR = 'N'. RFP holds AP as follows: */
- /* For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */
- /* three columns of AP upper. The lower triangle A(3:4,0:1) consists of */
- /* the transpose of the first two columns of AP upper. */
- /* For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */
- /* three columns of AP lower. The upper triangle A(0:1,1:2) consists of */
- /* the transpose of the last two columns of AP lower. */
- /* This covers the case N odd and TRANSR = 'N'. */
- /* RFP A RFP A */
- /* 02 03 04 00 33 43 */
- /* 12 13 14 10 11 44 */
- /* 22 23 24 20 21 22 */
- /* 00 33 34 30 31 32 */
- /* 01 11 44 40 41 42 */
- /* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
- /* transpose of RFP A above. One therefore gets: */
- /* RFP A RFP A */
- /* 02 12 22 00 01 00 10 20 30 40 50 */
- /* 03 13 23 33 11 33 11 21 31 41 51 */
- /* 04 14 24 34 44 43 44 22 32 42 52 */
- /* Reference */
- /* ========= */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- if (*n == 0) {
- ret_val = 0.;
- return ret_val;
- }
- /* set noe = 1 if n is odd. if n is even set noe=0 */
- noe = 1;
- if (*n % 2 == 0) {
- noe = 0;
- }
- /* set ifm = 0 when form='T or 't' and 1 otherwise */
- ifm = 1;
- if (_starpu_lsame_(transr, "T")) {
- ifm = 0;
- }
- /* set ilu = 0 when uplo='U or 'u' and 1 otherwise */
- ilu = 1;
- if (_starpu_lsame_(uplo, "U")) {
- ilu = 0;
- }
- /* set lda = (n+1)/2 when ifm = 0 */
- /* set lda = n when ifm = 1 and noe = 1 */
- /* set lda = n+1 when ifm = 1 and noe = 0 */
- if (ifm == 1) {
- if (noe == 1) {
- lda = *n;
- } else {
- /* noe=0 */
- lda = *n + 1;
- }
- } else {
- /* ifm=0 */
- lda = (*n + 1) / 2;
- }
- if (_starpu_lsame_(norm, "M")) {
- /* Find max(abs(A(i,j))). */
- k = (*n + 1) / 2;
- value = 0.;
- if (noe == 1) {
- /* n is odd */
- if (ifm == 1) {
- /* A is n by k */
- i__1 = k - 1;
- for (j = 0; j <= i__1; ++j) {
- i__2 = *n - 1;
- for (i__ = 0; i__ <= i__2; ++i__) {
- /* Computing MAX */
- d__2 = value, d__3 = (d__1 = a[i__ + j * lda], abs(
- d__1));
- value = max(d__2,d__3);
- }
- }
- } else {
- /* xpose case; A is k by n */
- i__1 = *n - 1;
- for (j = 0; j <= i__1; ++j) {
- i__2 = k - 1;
- for (i__ = 0; i__ <= i__2; ++i__) {
- /* Computing MAX */
- d__2 = value, d__3 = (d__1 = a[i__ + j * lda], abs(
- d__1));
- value = max(d__2,d__3);
- }
- }
- }
- } else {
- /* n is even */
- if (ifm == 1) {
- /* A is n+1 by k */
- i__1 = k - 1;
- for (j = 0; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = 0; i__ <= i__2; ++i__) {
- /* Computing MAX */
- d__2 = value, d__3 = (d__1 = a[i__ + j * lda], abs(
- d__1));
- value = max(d__2,d__3);
- }
- }
- } else {
- /* xpose case; A is k by n+1 */
- i__1 = *n;
- for (j = 0; j <= i__1; ++j) {
- i__2 = k - 1;
- for (i__ = 0; i__ <= i__2; ++i__) {
- /* Computing MAX */
- d__2 = value, d__3 = (d__1 = a[i__ + j * lda], abs(
- d__1));
- value = max(d__2,d__3);
- }
- }
- }
- }
- } else if (_starpu_lsame_(norm, "I") || _starpu_lsame_(norm, "O") || *(unsigned char *)norm == '1') {
- /* Find normI(A) ( = norm1(A), since A is symmetric). */
- if (ifm == 1) {
- k = *n / 2;
- if (noe == 1) {
- /* n is odd */
- if (ilu == 0) {
- i__1 = k - 1;
- for (i__ = 0; i__ <= i__1; ++i__) {
- work[i__] = 0.;
- }
- i__1 = k;
- for (j = 0; j <= i__1; ++j) {
- s = 0.;
- i__2 = k + j - 1;
- for (i__ = 0; i__ <= i__2; ++i__) {
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* -> A(i,j+k) */
- s += aa;
- work[i__] += aa;
- }
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* -> A(j+k,j+k) */
- work[j + k] = s + aa;
- if (i__ == k + k) {
- goto L10;
- }
- ++i__;
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* -> A(j,j) */
- work[j] += aa;
- s = 0.;
- i__2 = k - 1;
- for (l = j + 1; l <= i__2; ++l) {
- ++i__;
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* -> A(l,j) */
- s += aa;
- work[l] += aa;
- }
- work[j] += s;
- }
- L10:
- i__ = _starpu_idamax_(n, work, &c__1);
- value = work[i__ - 1];
- } else {
- /* ilu = 1 */
- ++k;
- /* k=(n+1)/2 for n odd and ilu=1 */
- i__1 = *n - 1;
- for (i__ = k; i__ <= i__1; ++i__) {
- work[i__] = 0.;
- }
- for (j = k - 1; j >= 0; --j) {
- s = 0.;
- i__1 = j - 2;
- for (i__ = 0; i__ <= i__1; ++i__) {
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* -> A(j+k,i+k) */
- s += aa;
- work[i__ + k] += aa;
- }
- if (j > 0) {
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* -> A(j+k,j+k) */
- s += aa;
- work[i__ + k] += s;
- /* i=j */
- ++i__;
- }
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* -> A(j,j) */
- work[j] = aa;
- s = 0.;
- i__1 = *n - 1;
- for (l = j + 1; l <= i__1; ++l) {
- ++i__;
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* -> A(l,j) */
- s += aa;
- work[l] += aa;
- }
- work[j] += s;
- }
- i__ = _starpu_idamax_(n, work, &c__1);
- value = work[i__ - 1];
- }
- } else {
- /* n is even */
- if (ilu == 0) {
- i__1 = k - 1;
- for (i__ = 0; i__ <= i__1; ++i__) {
- work[i__] = 0.;
- }
- i__1 = k - 1;
- for (j = 0; j <= i__1; ++j) {
- s = 0.;
- i__2 = k + j - 1;
- for (i__ = 0; i__ <= i__2; ++i__) {
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* -> A(i,j+k) */
- s += aa;
- work[i__] += aa;
- }
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* -> A(j+k,j+k) */
- work[j + k] = s + aa;
- ++i__;
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* -> A(j,j) */
- work[j] += aa;
- s = 0.;
- i__2 = k - 1;
- for (l = j + 1; l <= i__2; ++l) {
- ++i__;
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* -> A(l,j) */
- s += aa;
- work[l] += aa;
- }
- work[j] += s;
- }
- i__ = _starpu_idamax_(n, work, &c__1);
- value = work[i__ - 1];
- } else {
- /* ilu = 1 */
- i__1 = *n - 1;
- for (i__ = k; i__ <= i__1; ++i__) {
- work[i__] = 0.;
- }
- for (j = k - 1; j >= 0; --j) {
- s = 0.;
- i__1 = j - 1;
- for (i__ = 0; i__ <= i__1; ++i__) {
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* -> A(j+k,i+k) */
- s += aa;
- work[i__ + k] += aa;
- }
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* -> A(j+k,j+k) */
- s += aa;
- work[i__ + k] += s;
- /* i=j */
- ++i__;
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* -> A(j,j) */
- work[j] = aa;
- s = 0.;
- i__1 = *n - 1;
- for (l = j + 1; l <= i__1; ++l) {
- ++i__;
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* -> A(l,j) */
- s += aa;
- work[l] += aa;
- }
- work[j] += s;
- }
- i__ = _starpu_idamax_(n, work, &c__1);
- value = work[i__ - 1];
- }
- }
- } else {
- /* ifm=0 */
- k = *n / 2;
- if (noe == 1) {
- /* n is odd */
- if (ilu == 0) {
- n1 = k;
- /* n/2 */
- ++k;
- /* k is the row size and lda */
- i__1 = *n - 1;
- for (i__ = n1; i__ <= i__1; ++i__) {
- work[i__] = 0.;
- }
- i__1 = n1 - 1;
- for (j = 0; j <= i__1; ++j) {
- s = 0.;
- i__2 = k - 1;
- for (i__ = 0; i__ <= i__2; ++i__) {
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* A(j,n1+i) */
- work[i__ + n1] += aa;
- s += aa;
- }
- work[j] = s;
- }
- /* j=n1=k-1 is special */
- s = (d__1 = a[j * lda], abs(d__1));
- /* A(k-1,k-1) */
- i__1 = k - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* A(k-1,i+n1) */
- work[i__ + n1] += aa;
- s += aa;
- }
- work[j] += s;
- i__1 = *n - 1;
- for (j = k; j <= i__1; ++j) {
- s = 0.;
- i__2 = j - k - 1;
- for (i__ = 0; i__ <= i__2; ++i__) {
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* A(i,j-k) */
- work[i__] += aa;
- s += aa;
- }
- /* i=j-k */
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* A(j-k,j-k) */
- s += aa;
- work[j - k] += s;
- ++i__;
- s = (d__1 = a[i__ + j * lda], abs(d__1));
- /* A(j,j) */
- i__2 = *n - 1;
- for (l = j + 1; l <= i__2; ++l) {
- ++i__;
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* A(j,l) */
- work[l] += aa;
- s += aa;
- }
- work[j] += s;
- }
- i__ = _starpu_idamax_(n, work, &c__1);
- value = work[i__ - 1];
- } else {
- /* ilu=1 */
- ++k;
- /* k=(n+1)/2 for n odd and ilu=1 */
- i__1 = *n - 1;
- for (i__ = k; i__ <= i__1; ++i__) {
- work[i__] = 0.;
- }
- i__1 = k - 2;
- for (j = 0; j <= i__1; ++j) {
- /* process */
- s = 0.;
- i__2 = j - 1;
- for (i__ = 0; i__ <= i__2; ++i__) {
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* A(j,i) */
- work[i__] += aa;
- s += aa;
- }
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* i=j so process of A(j,j) */
- s += aa;
- work[j] = s;
- /* is initialised here */
- ++i__;
- /* i=j process A(j+k,j+k) */
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- s = aa;
- i__2 = *n - 1;
- for (l = k + j + 1; l <= i__2; ++l) {
- ++i__;
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* A(l,k+j) */
- s += aa;
- work[l] += aa;
- }
- work[k + j] += s;
- }
- /* j=k-1 is special :process col A(k-1,0:k-1) */
- s = 0.;
- i__1 = k - 2;
- for (i__ = 0; i__ <= i__1; ++i__) {
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* A(k,i) */
- work[i__] += aa;
- s += aa;
- }
- /* i=k-1 */
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* A(k-1,k-1) */
- s += aa;
- work[i__] = s;
- /* done with col j=k+1 */
- i__1 = *n - 1;
- for (j = k; j <= i__1; ++j) {
- /* process col j of A = A(j,0:k-1) */
- s = 0.;
- i__2 = k - 1;
- for (i__ = 0; i__ <= i__2; ++i__) {
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* A(j,i) */
- work[i__] += aa;
- s += aa;
- }
- work[j] += s;
- }
- i__ = _starpu_idamax_(n, work, &c__1);
- value = work[i__ - 1];
- }
- } else {
- /* n is even */
- if (ilu == 0) {
- i__1 = *n - 1;
- for (i__ = k; i__ <= i__1; ++i__) {
- work[i__] = 0.;
- }
- i__1 = k - 1;
- for (j = 0; j <= i__1; ++j) {
- s = 0.;
- i__2 = k - 1;
- for (i__ = 0; i__ <= i__2; ++i__) {
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* A(j,i+k) */
- work[i__ + k] += aa;
- s += aa;
- }
- work[j] = s;
- }
- /* j=k */
- aa = (d__1 = a[j * lda], abs(d__1));
- /* A(k,k) */
- s = aa;
- i__1 = k - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* A(k,k+i) */
- work[i__ + k] += aa;
- s += aa;
- }
- work[j] += s;
- i__1 = *n - 1;
- for (j = k + 1; j <= i__1; ++j) {
- s = 0.;
- i__2 = j - 2 - k;
- for (i__ = 0; i__ <= i__2; ++i__) {
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* A(i,j-k-1) */
- work[i__] += aa;
- s += aa;
- }
- /* i=j-1-k */
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* A(j-k-1,j-k-1) */
- s += aa;
- work[j - k - 1] += s;
- ++i__;
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* A(j,j) */
- s = aa;
- i__2 = *n - 1;
- for (l = j + 1; l <= i__2; ++l) {
- ++i__;
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* A(j,l) */
- work[l] += aa;
- s += aa;
- }
- work[j] += s;
- }
- /* j=n */
- s = 0.;
- i__1 = k - 2;
- for (i__ = 0; i__ <= i__1; ++i__) {
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* A(i,k-1) */
- work[i__] += aa;
- s += aa;
- }
- /* i=k-1 */
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* A(k-1,k-1) */
- s += aa;
- work[i__] += s;
- i__ = _starpu_idamax_(n, work, &c__1);
- value = work[i__ - 1];
- } else {
- /* ilu=1 */
- i__1 = *n - 1;
- for (i__ = k; i__ <= i__1; ++i__) {
- work[i__] = 0.;
- }
- /* j=0 is special :process col A(k:n-1,k) */
- s = abs(a[0]);
- /* A(k,k) */
- i__1 = k - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- aa = (d__1 = a[i__], abs(d__1));
- /* A(k+i,k) */
- work[i__ + k] += aa;
- s += aa;
- }
- work[k] += s;
- i__1 = k - 1;
- for (j = 1; j <= i__1; ++j) {
- /* process */
- s = 0.;
- i__2 = j - 2;
- for (i__ = 0; i__ <= i__2; ++i__) {
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* A(j-1,i) */
- work[i__] += aa;
- s += aa;
- }
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* i=j-1 so process of A(j-1,j-1) */
- s += aa;
- work[j - 1] = s;
- /* is initialised here */
- ++i__;
- /* i=j process A(j+k,j+k) */
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- s = aa;
- i__2 = *n - 1;
- for (l = k + j + 1; l <= i__2; ++l) {
- ++i__;
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* A(l,k+j) */
- s += aa;
- work[l] += aa;
- }
- work[k + j] += s;
- }
- /* j=k is special :process col A(k,0:k-1) */
- s = 0.;
- i__1 = k - 2;
- for (i__ = 0; i__ <= i__1; ++i__) {
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* A(k,i) */
- work[i__] += aa;
- s += aa;
- }
- /* i=k-1 */
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* A(k-1,k-1) */
- s += aa;
- work[i__] = s;
- /* done with col j=k+1 */
- i__1 = *n;
- for (j = k + 1; j <= i__1; ++j) {
- /* process col j-1 of A = A(j-1,0:k-1) */
- s = 0.;
- i__2 = k - 1;
- for (i__ = 0; i__ <= i__2; ++i__) {
- aa = (d__1 = a[i__ + j * lda], abs(d__1));
- /* A(j-1,i) */
- work[i__] += aa;
- s += aa;
- }
- work[j - 1] += s;
- }
- i__ = _starpu_idamax_(n, work, &c__1);
- value = work[i__ - 1];
- }
- }
- }
- } else if (_starpu_lsame_(norm, "F") || _starpu_lsame_(norm, "E")) {
- /* Find normF(A). */
- k = (*n + 1) / 2;
- scale = 0.;
- s = 1.;
- if (noe == 1) {
- /* n is odd */
- if (ifm == 1) {
- /* A is normal */
- if (ilu == 0) {
- /* A is upper */
- i__1 = k - 3;
- for (j = 0; j <= i__1; ++j) {
- i__2 = k - j - 2;
- _starpu_dlassq_(&i__2, &a[k + j + 1 + j * lda], &c__1, &scale,
- &s);
- /* L at A(k,0) */
- }
- i__1 = k - 1;
- for (j = 0; j <= i__1; ++j) {
- i__2 = k + j - 1;
- _starpu_dlassq_(&i__2, &a[j * lda], &c__1, &scale, &s);
- /* trap U at A(0,0) */
- }
- s += s;
- /* double s for the off diagonal elements */
- i__1 = k - 1;
- i__2 = lda + 1;
- _starpu_dlassq_(&i__1, &a[k], &i__2, &scale, &s);
- /* tri L at A(k,0) */
- i__1 = lda + 1;
- _starpu_dlassq_(&k, &a[k - 1], &i__1, &scale, &s);
- /* tri U at A(k-1,0) */
- } else {
- /* ilu=1 & A is lower */
- i__1 = k - 1;
- for (j = 0; j <= i__1; ++j) {
- i__2 = *n - j - 1;
- _starpu_dlassq_(&i__2, &a[j + 1 + j * lda], &c__1, &scale, &s)
- ;
- /* trap L at A(0,0) */
- }
- i__1 = k - 2;
- for (j = 0; j <= i__1; ++j) {
- _starpu_dlassq_(&j, &a[(j + 1) * lda], &c__1, &scale, &s);
- /* U at A(0,1) */
- }
- s += s;
- /* double s for the off diagonal elements */
- i__1 = lda + 1;
- _starpu_dlassq_(&k, a, &i__1, &scale, &s);
- /* tri L at A(0,0) */
- i__1 = k - 1;
- i__2 = lda + 1;
- _starpu_dlassq_(&i__1, &a[lda], &i__2, &scale, &s);
- /* tri U at A(0,1) */
- }
- } else {
- /* A is xpose */
- if (ilu == 0) {
- /* A' is upper */
- i__1 = k - 2;
- for (j = 1; j <= i__1; ++j) {
- _starpu_dlassq_(&j, &a[(k + j) * lda], &c__1, &scale, &s);
- /* U at A(0,k) */
- }
- i__1 = k - 2;
- for (j = 0; j <= i__1; ++j) {
- _starpu_dlassq_(&k, &a[j * lda], &c__1, &scale, &s);
- /* k by k-1 rect. at A(0,0) */
- }
- i__1 = k - 2;
- for (j = 0; j <= i__1; ++j) {
- i__2 = k - j - 1;
- _starpu_dlassq_(&i__2, &a[j + 1 + (j + k - 1) * lda], &c__1, &
- scale, &s);
- /* L at A(0,k-1) */
- }
- s += s;
- /* double s for the off diagonal elements */
- i__1 = k - 1;
- i__2 = lda + 1;
- _starpu_dlassq_(&i__1, &a[k * lda], &i__2, &scale, &s);
- /* tri U at A(0,k) */
- i__1 = lda + 1;
- _starpu_dlassq_(&k, &a[(k - 1) * lda], &i__1, &scale, &s);
- /* tri L at A(0,k-1) */
- } else {
- /* A' is lower */
- i__1 = k - 1;
- for (j = 1; j <= i__1; ++j) {
- _starpu_dlassq_(&j, &a[j * lda], &c__1, &scale, &s);
- /* U at A(0,0) */
- }
- i__1 = *n - 1;
- for (j = k; j <= i__1; ++j) {
- _starpu_dlassq_(&k, &a[j * lda], &c__1, &scale, &s);
- /* k by k-1 rect. at A(0,k) */
- }
- i__1 = k - 3;
- for (j = 0; j <= i__1; ++j) {
- i__2 = k - j - 2;
- _starpu_dlassq_(&i__2, &a[j + 2 + j * lda], &c__1, &scale, &s)
- ;
- /* L at A(1,0) */
- }
- s += s;
- /* double s for the off diagonal elements */
- i__1 = lda + 1;
- _starpu_dlassq_(&k, a, &i__1, &scale, &s);
- /* tri U at A(0,0) */
- i__1 = k - 1;
- i__2 = lda + 1;
- _starpu_dlassq_(&i__1, &a[1], &i__2, &scale, &s);
- /* tri L at A(1,0) */
- }
- }
- } else {
- /* n is even */
- if (ifm == 1) {
- /* A is normal */
- if (ilu == 0) {
- /* A is upper */
- i__1 = k - 2;
- for (j = 0; j <= i__1; ++j) {
- i__2 = k - j - 1;
- _starpu_dlassq_(&i__2, &a[k + j + 2 + j * lda], &c__1, &scale,
- &s);
- /* L at A(k+1,0) */
- }
- i__1 = k - 1;
- for (j = 0; j <= i__1; ++j) {
- i__2 = k + j;
- _starpu_dlassq_(&i__2, &a[j * lda], &c__1, &scale, &s);
- /* trap U at A(0,0) */
- }
- s += s;
- /* double s for the off diagonal elements */
- i__1 = lda + 1;
- _starpu_dlassq_(&k, &a[k + 1], &i__1, &scale, &s);
- /* tri L at A(k+1,0) */
- i__1 = lda + 1;
- _starpu_dlassq_(&k, &a[k], &i__1, &scale, &s);
- /* tri U at A(k,0) */
- } else {
- /* ilu=1 & A is lower */
- i__1 = k - 1;
- for (j = 0; j <= i__1; ++j) {
- i__2 = *n - j - 1;
- _starpu_dlassq_(&i__2, &a[j + 2 + j * lda], &c__1, &scale, &s)
- ;
- /* trap L at A(1,0) */
- }
- i__1 = k - 1;
- for (j = 1; j <= i__1; ++j) {
- _starpu_dlassq_(&j, &a[j * lda], &c__1, &scale, &s);
- /* U at A(0,0) */
- }
- s += s;
- /* double s for the off diagonal elements */
- i__1 = lda + 1;
- _starpu_dlassq_(&k, &a[1], &i__1, &scale, &s);
- /* tri L at A(1,0) */
- i__1 = lda + 1;
- _starpu_dlassq_(&k, a, &i__1, &scale, &s);
- /* tri U at A(0,0) */
- }
- } else {
- /* A is xpose */
- if (ilu == 0) {
- /* A' is upper */
- i__1 = k - 1;
- for (j = 1; j <= i__1; ++j) {
- _starpu_dlassq_(&j, &a[(k + 1 + j) * lda], &c__1, &scale, &s);
- /* U at A(0,k+1) */
- }
- i__1 = k - 1;
- for (j = 0; j <= i__1; ++j) {
- _starpu_dlassq_(&k, &a[j * lda], &c__1, &scale, &s);
- /* k by k rect. at A(0,0) */
- }
- i__1 = k - 2;
- for (j = 0; j <= i__1; ++j) {
- i__2 = k - j - 1;
- _starpu_dlassq_(&i__2, &a[j + 1 + (j + k) * lda], &c__1, &
- scale, &s);
- /* L at A(0,k) */
- }
- s += s;
- /* double s for the off diagonal elements */
- i__1 = lda + 1;
- _starpu_dlassq_(&k, &a[(k + 1) * lda], &i__1, &scale, &s);
- /* tri U at A(0,k+1) */
- i__1 = lda + 1;
- _starpu_dlassq_(&k, &a[k * lda], &i__1, &scale, &s);
- /* tri L at A(0,k) */
- } else {
- /* A' is lower */
- i__1 = k - 1;
- for (j = 1; j <= i__1; ++j) {
- _starpu_dlassq_(&j, &a[(j + 1) * lda], &c__1, &scale, &s);
- /* U at A(0,1) */
- }
- i__1 = *n;
- for (j = k + 1; j <= i__1; ++j) {
- _starpu_dlassq_(&k, &a[j * lda], &c__1, &scale, &s);
- /* k by k rect. at A(0,k+1) */
- }
- i__1 = k - 2;
- for (j = 0; j <= i__1; ++j) {
- i__2 = k - j - 1;
- _starpu_dlassq_(&i__2, &a[j + 1 + j * lda], &c__1, &scale, &s)
- ;
- /* L at A(0,0) */
- }
- s += s;
- /* double s for the off diagonal elements */
- i__1 = lda + 1;
- _starpu_dlassq_(&k, &a[lda], &i__1, &scale, &s);
- /* tri L at A(0,1) */
- i__1 = lda + 1;
- _starpu_dlassq_(&k, a, &i__1, &scale, &s);
- /* tri U at A(0,0) */
- }
- }
- }
- value = scale * sqrt(s);
- }
- ret_val = value;
- return ret_val;
- /* End of DLANSF */
- } /* _starpu_dlansf_ */
|