123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530 |
- /* dlalsd.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static doublereal c_b6 = 0.;
- static integer c__0 = 0;
- static doublereal c_b11 = 1.;
- /* Subroutine */ int _starpu_dlalsd_(char *uplo, integer *smlsiz, integer *n, integer
- *nrhs, doublereal *d__, doublereal *e, doublereal *b, integer *ldb,
- doublereal *rcond, integer *rank, doublereal *work, integer *iwork,
- integer *info)
- {
- /* System generated locals */
- integer b_dim1, b_offset, i__1, i__2;
- doublereal d__1;
- /* Builtin functions */
- double log(doublereal), d_sign(doublereal *, doublereal *);
- /* Local variables */
- integer c__, i__, j, k;
- doublereal r__;
- integer s, u, z__;
- doublereal cs;
- integer bx;
- doublereal sn;
- integer st, vt, nm1, st1;
- doublereal eps;
- integer iwk;
- doublereal tol;
- integer difl, difr;
- doublereal rcnd;
- integer perm, nsub;
- extern /* Subroutine */ int _starpu_drot_(integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *);
- integer nlvl, sqre, bxst;
- extern /* Subroutine */ int _starpu_dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *),
- _starpu_dcopy_(integer *, doublereal *, integer *, doublereal *, integer
- *);
- integer poles, sizei, nsize, nwork, icmpq1, icmpq2;
- extern doublereal _starpu_dlamch_(char *);
- extern /* Subroutine */ int _starpu_dlasda_(integer *, integer *, integer *,
- integer *, doublereal *, doublereal *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, doublereal *,
- doublereal *, integer *, integer *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, doublereal *, integer *,
- integer *), _starpu_dlalsa_(integer *, integer *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- doublereal *, doublereal *, integer *, integer *, integer *,
- integer *, doublereal *, doublereal *, doublereal *, doublereal *,
- integer *, integer *), _starpu_dlascl_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, integer *, doublereal *,
- integer *, integer *);
- extern integer _starpu_idamax_(integer *, doublereal *, integer *);
- extern /* Subroutine */ int _starpu_dlasdq_(char *, integer *, integer *, integer
- *, integer *, integer *, doublereal *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, integer *), _starpu_dlacpy_(char *, integer *,
- integer *, doublereal *, integer *, doublereal *, integer *), _starpu_dlartg_(doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *), _starpu_dlaset_(char *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, integer *),
- _starpu_xerbla_(char *, integer *);
- integer givcol;
- extern doublereal _starpu_dlanst_(char *, integer *, doublereal *, doublereal *);
- extern /* Subroutine */ int _starpu_dlasrt_(char *, integer *, doublereal *,
- integer *);
- doublereal orgnrm;
- integer givnum, givptr, smlszp;
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLALSD uses the singular value decomposition of A to solve the least */
- /* squares problem of finding X to minimize the Euclidean norm of each */
- /* column of A*X-B, where A is N-by-N upper bidiagonal, and X and B */
- /* are N-by-NRHS. The solution X overwrites B. */
- /* The singular values of A smaller than RCOND times the largest */
- /* singular value are treated as zero in solving the least squares */
- /* problem; in this case a minimum norm solution is returned. */
- /* The actual singular values are returned in D in ascending order. */
- /* This code makes very mild assumptions about floating point */
- /* arithmetic. It will work on machines with a guard digit in */
- /* add/subtract, or on those binary machines without guard digits */
- /* which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. */
- /* It could conceivably fail on hexadecimal or decimal machines */
- /* without guard digits, but we know of none. */
- /* Arguments */
- /* ========= */
- /* UPLO (input) CHARACTER*1 */
- /* = 'U': D and E define an upper bidiagonal matrix. */
- /* = 'L': D and E define a lower bidiagonal matrix. */
- /* SMLSIZ (input) INTEGER */
- /* The maximum size of the subproblems at the bottom of the */
- /* computation tree. */
- /* N (input) INTEGER */
- /* The dimension of the bidiagonal matrix. N >= 0. */
- /* NRHS (input) INTEGER */
- /* The number of columns of B. NRHS must be at least 1. */
- /* D (input/output) DOUBLE PRECISION array, dimension (N) */
- /* On entry D contains the main diagonal of the bidiagonal */
- /* matrix. On exit, if INFO = 0, D contains its singular values. */
- /* E (input/output) DOUBLE PRECISION array, dimension (N-1) */
- /* Contains the super-diagonal entries of the bidiagonal matrix. */
- /* On exit, E has been destroyed. */
- /* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
- /* On input, B contains the right hand sides of the least */
- /* squares problem. On output, B contains the solution X. */
- /* LDB (input) INTEGER */
- /* The leading dimension of B in the calling subprogram. */
- /* LDB must be at least max(1,N). */
- /* RCOND (input) DOUBLE PRECISION */
- /* The singular values of A less than or equal to RCOND times */
- /* the largest singular value are treated as zero in solving */
- /* the least squares problem. If RCOND is negative, */
- /* machine precision is used instead. */
- /* For example, if diag(S)*X=B were the least squares problem, */
- /* where diag(S) is a diagonal matrix of singular values, the */
- /* solution would be X(i) = B(i) / S(i) if S(i) is greater than */
- /* RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to */
- /* RCOND*max(S). */
- /* RANK (output) INTEGER */
- /* The number of singular values of A greater than RCOND times */
- /* the largest singular value. */
- /* WORK (workspace) DOUBLE PRECISION array, dimension at least */
- /* (9*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2), */
- /* where NLVL = max(0, INT(log_2 (N/(SMLSIZ+1))) + 1). */
- /* IWORK (workspace) INTEGER array, dimension at least */
- /* (3*N*NLVL + 11*N) */
- /* INFO (output) INTEGER */
- /* = 0: successful exit. */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > 0: The algorithm failed to compute an singular value while */
- /* working on the submatrix lying in rows and columns */
- /* INFO/(N+1) through MOD(INFO,N+1). */
- /* Further Details */
- /* =============== */
- /* Based on contributions by */
- /* Ming Gu and Ren-Cang Li, Computer Science Division, University of */
- /* California at Berkeley, USA */
- /* Osni Marques, LBNL/NERSC, USA */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- --d__;
- --e;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- --work;
- --iwork;
- /* Function Body */
- *info = 0;
- if (*n < 0) {
- *info = -3;
- } else if (*nrhs < 1) {
- *info = -4;
- } else if (*ldb < 1 || *ldb < *n) {
- *info = -8;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DLALSD", &i__1);
- return 0;
- }
- eps = _starpu_dlamch_("Epsilon");
- /* Set up the tolerance. */
- if (*rcond <= 0. || *rcond >= 1.) {
- rcnd = eps;
- } else {
- rcnd = *rcond;
- }
- *rank = 0;
- /* Quick return if possible. */
- if (*n == 0) {
- return 0;
- } else if (*n == 1) {
- if (d__[1] == 0.) {
- _starpu_dlaset_("A", &c__1, nrhs, &c_b6, &c_b6, &b[b_offset], ldb);
- } else {
- *rank = 1;
- _starpu_dlascl_("G", &c__0, &c__0, &d__[1], &c_b11, &c__1, nrhs, &b[
- b_offset], ldb, info);
- d__[1] = abs(d__[1]);
- }
- return 0;
- }
- /* Rotate the matrix if it is lower bidiagonal. */
- if (*(unsigned char *)uplo == 'L') {
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- _starpu_dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
- d__[i__] = r__;
- e[i__] = sn * d__[i__ + 1];
- d__[i__ + 1] = cs * d__[i__ + 1];
- if (*nrhs == 1) {
- _starpu_drot_(&c__1, &b[i__ + b_dim1], &c__1, &b[i__ + 1 + b_dim1], &
- c__1, &cs, &sn);
- } else {
- work[(i__ << 1) - 1] = cs;
- work[i__ * 2] = sn;
- }
- /* L10: */
- }
- if (*nrhs > 1) {
- i__1 = *nrhs;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = *n - 1;
- for (j = 1; j <= i__2; ++j) {
- cs = work[(j << 1) - 1];
- sn = work[j * 2];
- _starpu_drot_(&c__1, &b[j + i__ * b_dim1], &c__1, &b[j + 1 + i__ *
- b_dim1], &c__1, &cs, &sn);
- /* L20: */
- }
- /* L30: */
- }
- }
- }
- /* Scale. */
- nm1 = *n - 1;
- orgnrm = _starpu_dlanst_("M", n, &d__[1], &e[1]);
- if (orgnrm == 0.) {
- _starpu_dlaset_("A", n, nrhs, &c_b6, &c_b6, &b[b_offset], ldb);
- return 0;
- }
- _starpu_dlascl_("G", &c__0, &c__0, &orgnrm, &c_b11, n, &c__1, &d__[1], n, info);
- _starpu_dlascl_("G", &c__0, &c__0, &orgnrm, &c_b11, &nm1, &c__1, &e[1], &nm1,
- info);
- /* If N is smaller than the minimum divide size SMLSIZ, then solve */
- /* the problem with another solver. */
- if (*n <= *smlsiz) {
- nwork = *n * *n + 1;
- _starpu_dlaset_("A", n, n, &c_b6, &c_b11, &work[1], n);
- _starpu_dlasdq_("U", &c__0, n, n, &c__0, nrhs, &d__[1], &e[1], &work[1], n, &
- work[1], n, &b[b_offset], ldb, &work[nwork], info);
- if (*info != 0) {
- return 0;
- }
- tol = rcnd * (d__1 = d__[_starpu_idamax_(n, &d__[1], &c__1)], abs(d__1));
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (d__[i__] <= tol) {
- _starpu_dlaset_("A", &c__1, nrhs, &c_b6, &c_b6, &b[i__ + b_dim1], ldb);
- } else {
- _starpu_dlascl_("G", &c__0, &c__0, &d__[i__], &c_b11, &c__1, nrhs, &b[
- i__ + b_dim1], ldb, info);
- ++(*rank);
- }
- /* L40: */
- }
- _starpu_dgemm_("T", "N", n, nrhs, n, &c_b11, &work[1], n, &b[b_offset], ldb, &
- c_b6, &work[nwork], n);
- _starpu_dlacpy_("A", n, nrhs, &work[nwork], n, &b[b_offset], ldb);
- /* Unscale. */
- _starpu_dlascl_("G", &c__0, &c__0, &c_b11, &orgnrm, n, &c__1, &d__[1], n,
- info);
- _starpu_dlasrt_("D", n, &d__[1], info);
- _starpu_dlascl_("G", &c__0, &c__0, &orgnrm, &c_b11, n, nrhs, &b[b_offset],
- ldb, info);
- return 0;
- }
- /* Book-keeping and setting up some constants. */
- nlvl = (integer) (log((doublereal) (*n) / (doublereal) (*smlsiz + 1)) /
- log(2.)) + 1;
- smlszp = *smlsiz + 1;
- u = 1;
- vt = *smlsiz * *n + 1;
- difl = vt + smlszp * *n;
- difr = difl + nlvl * *n;
- z__ = difr + (nlvl * *n << 1);
- c__ = z__ + nlvl * *n;
- s = c__ + *n;
- poles = s + *n;
- givnum = poles + (nlvl << 1) * *n;
- bx = givnum + (nlvl << 1) * *n;
- nwork = bx + *n * *nrhs;
- sizei = *n + 1;
- k = sizei + *n;
- givptr = k + *n;
- perm = givptr + *n;
- givcol = perm + nlvl * *n;
- iwk = givcol + (nlvl * *n << 1);
- st = 1;
- sqre = 0;
- icmpq1 = 1;
- icmpq2 = 0;
- nsub = 0;
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if ((d__1 = d__[i__], abs(d__1)) < eps) {
- d__[i__] = d_sign(&eps, &d__[i__]);
- }
- /* L50: */
- }
- i__1 = nm1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if ((d__1 = e[i__], abs(d__1)) < eps || i__ == nm1) {
- ++nsub;
- iwork[nsub] = st;
- /* Subproblem found. First determine its size and then */
- /* apply divide and conquer on it. */
- if (i__ < nm1) {
- /* A subproblem with E(I) small for I < NM1. */
- nsize = i__ - st + 1;
- iwork[sizei + nsub - 1] = nsize;
- } else if ((d__1 = e[i__], abs(d__1)) >= eps) {
- /* A subproblem with E(NM1) not too small but I = NM1. */
- nsize = *n - st + 1;
- iwork[sizei + nsub - 1] = nsize;
- } else {
- /* A subproblem with E(NM1) small. This implies an */
- /* 1-by-1 subproblem at D(N), which is not solved */
- /* explicitly. */
- nsize = i__ - st + 1;
- iwork[sizei + nsub - 1] = nsize;
- ++nsub;
- iwork[nsub] = *n;
- iwork[sizei + nsub - 1] = 1;
- _starpu_dcopy_(nrhs, &b[*n + b_dim1], ldb, &work[bx + nm1], n);
- }
- st1 = st - 1;
- if (nsize == 1) {
- /* This is a 1-by-1 subproblem and is not solved */
- /* explicitly. */
- _starpu_dcopy_(nrhs, &b[st + b_dim1], ldb, &work[bx + st1], n);
- } else if (nsize <= *smlsiz) {
- /* This is a small subproblem and is solved by DLASDQ. */
- _starpu_dlaset_("A", &nsize, &nsize, &c_b6, &c_b11, &work[vt + st1],
- n);
- _starpu_dlasdq_("U", &c__0, &nsize, &nsize, &c__0, nrhs, &d__[st], &e[
- st], &work[vt + st1], n, &work[nwork], n, &b[st +
- b_dim1], ldb, &work[nwork], info);
- if (*info != 0) {
- return 0;
- }
- _starpu_dlacpy_("A", &nsize, nrhs, &b[st + b_dim1], ldb, &work[bx +
- st1], n);
- } else {
- /* A large problem. Solve it using divide and conquer. */
- _starpu_dlasda_(&icmpq1, smlsiz, &nsize, &sqre, &d__[st], &e[st], &
- work[u + st1], n, &work[vt + st1], &iwork[k + st1], &
- work[difl + st1], &work[difr + st1], &work[z__ + st1],
- &work[poles + st1], &iwork[givptr + st1], &iwork[
- givcol + st1], n, &iwork[perm + st1], &work[givnum +
- st1], &work[c__ + st1], &work[s + st1], &work[nwork],
- &iwork[iwk], info);
- if (*info != 0) {
- return 0;
- }
- bxst = bx + st1;
- _starpu_dlalsa_(&icmpq2, smlsiz, &nsize, nrhs, &b[st + b_dim1], ldb, &
- work[bxst], n, &work[u + st1], n, &work[vt + st1], &
- iwork[k + st1], &work[difl + st1], &work[difr + st1],
- &work[z__ + st1], &work[poles + st1], &iwork[givptr +
- st1], &iwork[givcol + st1], n, &iwork[perm + st1], &
- work[givnum + st1], &work[c__ + st1], &work[s + st1],
- &work[nwork], &iwork[iwk], info);
- if (*info != 0) {
- return 0;
- }
- }
- st = i__ + 1;
- }
- /* L60: */
- }
- /* Apply the singular values and treat the tiny ones as zero. */
- tol = rcnd * (d__1 = d__[_starpu_idamax_(n, &d__[1], &c__1)], abs(d__1));
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- /* Some of the elements in D can be negative because 1-by-1 */
- /* subproblems were not solved explicitly. */
- if ((d__1 = d__[i__], abs(d__1)) <= tol) {
- _starpu_dlaset_("A", &c__1, nrhs, &c_b6, &c_b6, &work[bx + i__ - 1], n);
- } else {
- ++(*rank);
- _starpu_dlascl_("G", &c__0, &c__0, &d__[i__], &c_b11, &c__1, nrhs, &work[
- bx + i__ - 1], n, info);
- }
- d__[i__] = (d__1 = d__[i__], abs(d__1));
- /* L70: */
- }
- /* Now apply back the right singular vectors. */
- icmpq2 = 1;
- i__1 = nsub;
- for (i__ = 1; i__ <= i__1; ++i__) {
- st = iwork[i__];
- st1 = st - 1;
- nsize = iwork[sizei + i__ - 1];
- bxst = bx + st1;
- if (nsize == 1) {
- _starpu_dcopy_(nrhs, &work[bxst], n, &b[st + b_dim1], ldb);
- } else if (nsize <= *smlsiz) {
- _starpu_dgemm_("T", "N", &nsize, nrhs, &nsize, &c_b11, &work[vt + st1], n,
- &work[bxst], n, &c_b6, &b[st + b_dim1], ldb);
- } else {
- _starpu_dlalsa_(&icmpq2, smlsiz, &nsize, nrhs, &work[bxst], n, &b[st +
- b_dim1], ldb, &work[u + st1], n, &work[vt + st1], &iwork[
- k + st1], &work[difl + st1], &work[difr + st1], &work[z__
- + st1], &work[poles + st1], &iwork[givptr + st1], &iwork[
- givcol + st1], n, &iwork[perm + st1], &work[givnum + st1],
- &work[c__ + st1], &work[s + st1], &work[nwork], &iwork[
- iwk], info);
- if (*info != 0) {
- return 0;
- }
- }
- /* L80: */
- }
- /* Unscale and sort the singular values. */
- _starpu_dlascl_("G", &c__0, &c__0, &c_b11, &orgnrm, n, &c__1, &d__[1], n, info);
- _starpu_dlasrt_("D", n, &d__[1], info);
- _starpu_dlascl_("G", &c__0, &c__0, &orgnrm, &c_b11, n, nrhs, &b[b_offset], ldb,
- info);
- return 0;
- /* End of DLALSD */
- } /* _starpu_dlalsd_ */
|