123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457 |
- /* dlalsa.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static doublereal c_b7 = 1.;
- static doublereal c_b8 = 0.;
- static integer c__2 = 2;
- /* Subroutine */ int _starpu_dlalsa_(integer *icompq, integer *smlsiz, integer *n,
- integer *nrhs, doublereal *b, integer *ldb, doublereal *bx, integer *
- ldbx, doublereal *u, integer *ldu, doublereal *vt, integer *k,
- doublereal *difl, doublereal *difr, doublereal *z__, doublereal *
- poles, integer *givptr, integer *givcol, integer *ldgcol, integer *
- perm, doublereal *givnum, doublereal *c__, doublereal *s, doublereal *
- work, integer *iwork, integer *info)
- {
- /* System generated locals */
- integer givcol_dim1, givcol_offset, perm_dim1, perm_offset, b_dim1,
- b_offset, bx_dim1, bx_offset, difl_dim1, difl_offset, difr_dim1,
- difr_offset, givnum_dim1, givnum_offset, poles_dim1, poles_offset,
- u_dim1, u_offset, vt_dim1, vt_offset, z_dim1, z_offset, i__1,
- i__2;
- /* Builtin functions */
- integer pow_ii(integer *, integer *);
- /* Local variables */
- integer i__, j, i1, ic, lf, nd, ll, nl, nr, im1, nlf, nrf, lvl, ndb1,
- nlp1, lvl2, nrp1, nlvl, sqre;
- extern /* Subroutine */ int _starpu_dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *);
- integer inode, ndiml, ndimr;
- extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *), _starpu_dlals0_(integer *, integer *, integer *,
- integer *, integer *, doublereal *, integer *, doublereal *,
- integer *, integer *, integer *, integer *, integer *, doublereal
- *, integer *, doublereal *, doublereal *, doublereal *,
- doublereal *, integer *, doublereal *, doublereal *, doublereal *,
- integer *), _starpu_dlasdt_(integer *, integer *, integer *, integer *,
- integer *, integer *, integer *), _starpu_xerbla_(char *, integer *);
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLALSA is an itermediate step in solving the least squares problem */
- /* by computing the SVD of the coefficient matrix in compact form (The */
- /* singular vectors are computed as products of simple orthorgonal */
- /* matrices.). */
- /* If ICOMPQ = 0, DLALSA applies the inverse of the left singular vector */
- /* matrix of an upper bidiagonal matrix to the right hand side; and if */
- /* ICOMPQ = 1, DLALSA applies the right singular vector matrix to the */
- /* right hand side. The singular vector matrices were generated in */
- /* compact form by DLALSA. */
- /* Arguments */
- /* ========= */
- /* ICOMPQ (input) INTEGER */
- /* Specifies whether the left or the right singular vector */
- /* matrix is involved. */
- /* = 0: Left singular vector matrix */
- /* = 1: Right singular vector matrix */
- /* SMLSIZ (input) INTEGER */
- /* The maximum size of the subproblems at the bottom of the */
- /* computation tree. */
- /* N (input) INTEGER */
- /* The row and column dimensions of the upper bidiagonal matrix. */
- /* NRHS (input) INTEGER */
- /* The number of columns of B and BX. NRHS must be at least 1. */
- /* B (input/output) DOUBLE PRECISION array, dimension ( LDB, NRHS ) */
- /* On input, B contains the right hand sides of the least */
- /* squares problem in rows 1 through M. */
- /* On output, B contains the solution X in rows 1 through N. */
- /* LDB (input) INTEGER */
- /* The leading dimension of B in the calling subprogram. */
- /* LDB must be at least max(1,MAX( M, N ) ). */
- /* BX (output) DOUBLE PRECISION array, dimension ( LDBX, NRHS ) */
- /* On exit, the result of applying the left or right singular */
- /* vector matrix to B. */
- /* LDBX (input) INTEGER */
- /* The leading dimension of BX. */
- /* U (input) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ). */
- /* On entry, U contains the left singular vector matrices of all */
- /* subproblems at the bottom level. */
- /* LDU (input) INTEGER, LDU = > N. */
- /* The leading dimension of arrays U, VT, DIFL, DIFR, */
- /* POLES, GIVNUM, and Z. */
- /* VT (input) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ). */
- /* On entry, VT' contains the right singular vector matrices of */
- /* all subproblems at the bottom level. */
- /* K (input) INTEGER array, dimension ( N ). */
- /* DIFL (input) DOUBLE PRECISION array, dimension ( LDU, NLVL ). */
- /* where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1. */
- /* DIFR (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ). */
- /* On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record */
- /* distances between singular values on the I-th level and */
- /* singular values on the (I -1)-th level, and DIFR(*, 2 * I) */
- /* record the normalizing factors of the right singular vectors */
- /* matrices of subproblems on I-th level. */
- /* Z (input) DOUBLE PRECISION array, dimension ( LDU, NLVL ). */
- /* On entry, Z(1, I) contains the components of the deflation- */
- /* adjusted updating row vector for subproblems on the I-th */
- /* level. */
- /* POLES (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ). */
- /* On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old */
- /* singular values involved in the secular equations on the I-th */
- /* level. */
- /* GIVPTR (input) INTEGER array, dimension ( N ). */
- /* On entry, GIVPTR( I ) records the number of Givens */
- /* rotations performed on the I-th problem on the computation */
- /* tree. */
- /* GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 * NLVL ). */
- /* On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the */
- /* locations of Givens rotations performed on the I-th level on */
- /* the computation tree. */
- /* LDGCOL (input) INTEGER, LDGCOL = > N. */
- /* The leading dimension of arrays GIVCOL and PERM. */
- /* PERM (input) INTEGER array, dimension ( LDGCOL, NLVL ). */
- /* On entry, PERM(*, I) records permutations done on the I-th */
- /* level of the computation tree. */
- /* GIVNUM (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ). */
- /* On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S- */
- /* values of Givens rotations performed on the I-th level on the */
- /* computation tree. */
- /* C (input) DOUBLE PRECISION array, dimension ( N ). */
- /* On entry, if the I-th subproblem is not square, */
- /* C( I ) contains the C-value of a Givens rotation related to */
- /* the right null space of the I-th subproblem. */
- /* S (input) DOUBLE PRECISION array, dimension ( N ). */
- /* On entry, if the I-th subproblem is not square, */
- /* S( I ) contains the S-value of a Givens rotation related to */
- /* the right null space of the I-th subproblem. */
- /* WORK (workspace) DOUBLE PRECISION array. */
- /* The dimension must be at least N. */
- /* IWORK (workspace) INTEGER array. */
- /* The dimension must be at least 3 * N */
- /* INFO (output) INTEGER */
- /* = 0: successful exit. */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* Further Details */
- /* =============== */
- /* Based on contributions by */
- /* Ming Gu and Ren-Cang Li, Computer Science Division, University of */
- /* California at Berkeley, USA */
- /* Osni Marques, LBNL/NERSC, USA */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- bx_dim1 = *ldbx;
- bx_offset = 1 + bx_dim1;
- bx -= bx_offset;
- givnum_dim1 = *ldu;
- givnum_offset = 1 + givnum_dim1;
- givnum -= givnum_offset;
- poles_dim1 = *ldu;
- poles_offset = 1 + poles_dim1;
- poles -= poles_offset;
- z_dim1 = *ldu;
- z_offset = 1 + z_dim1;
- z__ -= z_offset;
- difr_dim1 = *ldu;
- difr_offset = 1 + difr_dim1;
- difr -= difr_offset;
- difl_dim1 = *ldu;
- difl_offset = 1 + difl_dim1;
- difl -= difl_offset;
- vt_dim1 = *ldu;
- vt_offset = 1 + vt_dim1;
- vt -= vt_offset;
- u_dim1 = *ldu;
- u_offset = 1 + u_dim1;
- u -= u_offset;
- --k;
- --givptr;
- perm_dim1 = *ldgcol;
- perm_offset = 1 + perm_dim1;
- perm -= perm_offset;
- givcol_dim1 = *ldgcol;
- givcol_offset = 1 + givcol_dim1;
- givcol -= givcol_offset;
- --c__;
- --s;
- --work;
- --iwork;
- /* Function Body */
- *info = 0;
- if (*icompq < 0 || *icompq > 1) {
- *info = -1;
- } else if (*smlsiz < 3) {
- *info = -2;
- } else if (*n < *smlsiz) {
- *info = -3;
- } else if (*nrhs < 1) {
- *info = -4;
- } else if (*ldb < *n) {
- *info = -6;
- } else if (*ldbx < *n) {
- *info = -8;
- } else if (*ldu < *n) {
- *info = -10;
- } else if (*ldgcol < *n) {
- *info = -19;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DLALSA", &i__1);
- return 0;
- }
- /* Book-keeping and setting up the computation tree. */
- inode = 1;
- ndiml = inode + *n;
- ndimr = ndiml + *n;
- _starpu_dlasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr],
- smlsiz);
- /* The following code applies back the left singular vector factors. */
- /* For applying back the right singular vector factors, go to 50. */
- if (*icompq == 1) {
- goto L50;
- }
- /* The nodes on the bottom level of the tree were solved */
- /* by DLASDQ. The corresponding left and right singular vector */
- /* matrices are in explicit form. First apply back the left */
- /* singular vector matrices. */
- ndb1 = (nd + 1) / 2;
- i__1 = nd;
- for (i__ = ndb1; i__ <= i__1; ++i__) {
- /* IC : center row of each node */
- /* NL : number of rows of left subproblem */
- /* NR : number of rows of right subproblem */
- /* NLF: starting row of the left subproblem */
- /* NRF: starting row of the right subproblem */
- i1 = i__ - 1;
- ic = iwork[inode + i1];
- nl = iwork[ndiml + i1];
- nr = iwork[ndimr + i1];
- nlf = ic - nl;
- nrf = ic + 1;
- _starpu_dgemm_("T", "N", &nl, nrhs, &nl, &c_b7, &u[nlf + u_dim1], ldu, &b[nlf
- + b_dim1], ldb, &c_b8, &bx[nlf + bx_dim1], ldbx);
- _starpu_dgemm_("T", "N", &nr, nrhs, &nr, &c_b7, &u[nrf + u_dim1], ldu, &b[nrf
- + b_dim1], ldb, &c_b8, &bx[nrf + bx_dim1], ldbx);
- /* L10: */
- }
- /* Next copy the rows of B that correspond to unchanged rows */
- /* in the bidiagonal matrix to BX. */
- i__1 = nd;
- for (i__ = 1; i__ <= i__1; ++i__) {
- ic = iwork[inode + i__ - 1];
- _starpu_dcopy_(nrhs, &b[ic + b_dim1], ldb, &bx[ic + bx_dim1], ldbx);
- /* L20: */
- }
- /* Finally go through the left singular vector matrices of all */
- /* the other subproblems bottom-up on the tree. */
- j = pow_ii(&c__2, &nlvl);
- sqre = 0;
- for (lvl = nlvl; lvl >= 1; --lvl) {
- lvl2 = (lvl << 1) - 1;
- /* find the first node LF and last node LL on */
- /* the current level LVL */
- if (lvl == 1) {
- lf = 1;
- ll = 1;
- } else {
- i__1 = lvl - 1;
- lf = pow_ii(&c__2, &i__1);
- ll = (lf << 1) - 1;
- }
- i__1 = ll;
- for (i__ = lf; i__ <= i__1; ++i__) {
- im1 = i__ - 1;
- ic = iwork[inode + im1];
- nl = iwork[ndiml + im1];
- nr = iwork[ndimr + im1];
- nlf = ic - nl;
- nrf = ic + 1;
- --j;
- _starpu_dlals0_(icompq, &nl, &nr, &sqre, nrhs, &bx[nlf + bx_dim1], ldbx, &
- b[nlf + b_dim1], ldb, &perm[nlf + lvl * perm_dim1], &
- givptr[j], &givcol[nlf + lvl2 * givcol_dim1], ldgcol, &
- givnum[nlf + lvl2 * givnum_dim1], ldu, &poles[nlf + lvl2 *
- poles_dim1], &difl[nlf + lvl * difl_dim1], &difr[nlf +
- lvl2 * difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[
- j], &s[j], &work[1], info);
- /* L30: */
- }
- /* L40: */
- }
- goto L90;
- /* ICOMPQ = 1: applying back the right singular vector factors. */
- L50:
- /* First now go through the right singular vector matrices of all */
- /* the tree nodes top-down. */
- j = 0;
- i__1 = nlvl;
- for (lvl = 1; lvl <= i__1; ++lvl) {
- lvl2 = (lvl << 1) - 1;
- /* Find the first node LF and last node LL on */
- /* the current level LVL. */
- if (lvl == 1) {
- lf = 1;
- ll = 1;
- } else {
- i__2 = lvl - 1;
- lf = pow_ii(&c__2, &i__2);
- ll = (lf << 1) - 1;
- }
- i__2 = lf;
- for (i__ = ll; i__ >= i__2; --i__) {
- im1 = i__ - 1;
- ic = iwork[inode + im1];
- nl = iwork[ndiml + im1];
- nr = iwork[ndimr + im1];
- nlf = ic - nl;
- nrf = ic + 1;
- if (i__ == ll) {
- sqre = 0;
- } else {
- sqre = 1;
- }
- ++j;
- _starpu_dlals0_(icompq, &nl, &nr, &sqre, nrhs, &b[nlf + b_dim1], ldb, &bx[
- nlf + bx_dim1], ldbx, &perm[nlf + lvl * perm_dim1], &
- givptr[j], &givcol[nlf + lvl2 * givcol_dim1], ldgcol, &
- givnum[nlf + lvl2 * givnum_dim1], ldu, &poles[nlf + lvl2 *
- poles_dim1], &difl[nlf + lvl * difl_dim1], &difr[nlf +
- lvl2 * difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[
- j], &s[j], &work[1], info);
- /* L60: */
- }
- /* L70: */
- }
- /* The nodes on the bottom level of the tree were solved */
- /* by DLASDQ. The corresponding right singular vector */
- /* matrices are in explicit form. Apply them back. */
- ndb1 = (nd + 1) / 2;
- i__1 = nd;
- for (i__ = ndb1; i__ <= i__1; ++i__) {
- i1 = i__ - 1;
- ic = iwork[inode + i1];
- nl = iwork[ndiml + i1];
- nr = iwork[ndimr + i1];
- nlp1 = nl + 1;
- if (i__ == nd) {
- nrp1 = nr;
- } else {
- nrp1 = nr + 1;
- }
- nlf = ic - nl;
- nrf = ic + 1;
- _starpu_dgemm_("T", "N", &nlp1, nrhs, &nlp1, &c_b7, &vt[nlf + vt_dim1], ldu, &
- b[nlf + b_dim1], ldb, &c_b8, &bx[nlf + bx_dim1], ldbx);
- _starpu_dgemm_("T", "N", &nrp1, nrhs, &nrp1, &c_b7, &vt[nrf + vt_dim1], ldu, &
- b[nrf + b_dim1], ldb, &c_b8, &bx[nrf + bx_dim1], ldbx);
- /* L80: */
- }
- L90:
- return 0;
- /* End of DLALSA */
- } /* _starpu_dlalsa_ */
|