123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474 |
- /* dlals0.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static doublereal c_b5 = -1.;
- static integer c__1 = 1;
- static doublereal c_b11 = 1.;
- static doublereal c_b13 = 0.;
- static integer c__0 = 0;
- /* Subroutine */ int _starpu_dlals0_(integer *icompq, integer *nl, integer *nr,
- integer *sqre, integer *nrhs, doublereal *b, integer *ldb, doublereal
- *bx, integer *ldbx, integer *perm, integer *givptr, integer *givcol,
- integer *ldgcol, doublereal *givnum, integer *ldgnum, doublereal *
- poles, doublereal *difl, doublereal *difr, doublereal *z__, integer *
- k, doublereal *c__, doublereal *s, doublereal *work, integer *info)
- {
- /* System generated locals */
- integer givcol_dim1, givcol_offset, b_dim1, b_offset, bx_dim1, bx_offset,
- difr_dim1, difr_offset, givnum_dim1, givnum_offset, poles_dim1,
- poles_offset, i__1, i__2;
- doublereal d__1;
- /* Local variables */
- integer i__, j, m, n;
- doublereal dj;
- integer nlp1;
- doublereal temp;
- extern /* Subroutine */ int _starpu_drot_(integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *);
- extern doublereal _starpu_dnrm2_(integer *, doublereal *, integer *);
- extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *,
- integer *);
- doublereal diflj, difrj, dsigj;
- extern /* Subroutine */ int _starpu_dgemv_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *), _starpu_dcopy_(integer *,
- doublereal *, integer *, doublereal *, integer *);
- extern doublereal _starpu_dlamc3_(doublereal *, doublereal *);
- extern /* Subroutine */ int _starpu_dlascl_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, integer *, doublereal *,
- integer *, integer *), _starpu_dlacpy_(char *, integer *, integer
- *, doublereal *, integer *, doublereal *, integer *),
- _starpu_xerbla_(char *, integer *);
- doublereal dsigjp;
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLALS0 applies back the multiplying factors of either the left or the */
- /* right singular vector matrix of a diagonal matrix appended by a row */
- /* to the right hand side matrix B in solving the least squares problem */
- /* using the divide-and-conquer SVD approach. */
- /* For the left singular vector matrix, three types of orthogonal */
- /* matrices are involved: */
- /* (1L) Givens rotations: the number of such rotations is GIVPTR; the */
- /* pairs of columns/rows they were applied to are stored in GIVCOL; */
- /* and the C- and S-values of these rotations are stored in GIVNUM. */
- /* (2L) Permutation. The (NL+1)-st row of B is to be moved to the first */
- /* row, and for J=2:N, PERM(J)-th row of B is to be moved to the */
- /* J-th row. */
- /* (3L) The left singular vector matrix of the remaining matrix. */
- /* For the right singular vector matrix, four types of orthogonal */
- /* matrices are involved: */
- /* (1R) The right singular vector matrix of the remaining matrix. */
- /* (2R) If SQRE = 1, one extra Givens rotation to generate the right */
- /* null space. */
- /* (3R) The inverse transformation of (2L). */
- /* (4R) The inverse transformation of (1L). */
- /* Arguments */
- /* ========= */
- /* ICOMPQ (input) INTEGER */
- /* Specifies whether singular vectors are to be computed in */
- /* factored form: */
- /* = 0: Left singular vector matrix. */
- /* = 1: Right singular vector matrix. */
- /* NL (input) INTEGER */
- /* The row dimension of the upper block. NL >= 1. */
- /* NR (input) INTEGER */
- /* The row dimension of the lower block. NR >= 1. */
- /* SQRE (input) INTEGER */
- /* = 0: the lower block is an NR-by-NR square matrix. */
- /* = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
- /* The bidiagonal matrix has row dimension N = NL + NR + 1, */
- /* and column dimension M = N + SQRE. */
- /* NRHS (input) INTEGER */
- /* The number of columns of B and BX. NRHS must be at least 1. */
- /* B (input/output) DOUBLE PRECISION array, dimension ( LDB, NRHS ) */
- /* On input, B contains the right hand sides of the least */
- /* squares problem in rows 1 through M. On output, B contains */
- /* the solution X in rows 1 through N. */
- /* LDB (input) INTEGER */
- /* The leading dimension of B. LDB must be at least */
- /* max(1,MAX( M, N ) ). */
- /* BX (workspace) DOUBLE PRECISION array, dimension ( LDBX, NRHS ) */
- /* LDBX (input) INTEGER */
- /* The leading dimension of BX. */
- /* PERM (input) INTEGER array, dimension ( N ) */
- /* The permutations (from deflation and sorting) applied */
- /* to the two blocks. */
- /* GIVPTR (input) INTEGER */
- /* The number of Givens rotations which took place in this */
- /* subproblem. */
- /* GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 ) */
- /* Each pair of numbers indicates a pair of rows/columns */
- /* involved in a Givens rotation. */
- /* LDGCOL (input) INTEGER */
- /* The leading dimension of GIVCOL, must be at least N. */
- /* GIVNUM (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) */
- /* Each number indicates the C or S value used in the */
- /* corresponding Givens rotation. */
- /* LDGNUM (input) INTEGER */
- /* The leading dimension of arrays DIFR, POLES and */
- /* GIVNUM, must be at least K. */
- /* POLES (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) */
- /* On entry, POLES(1:K, 1) contains the new singular */
- /* values obtained from solving the secular equation, and */
- /* POLES(1:K, 2) is an array containing the poles in the secular */
- /* equation. */
- /* DIFL (input) DOUBLE PRECISION array, dimension ( K ). */
- /* On entry, DIFL(I) is the distance between I-th updated */
- /* (undeflated) singular value and the I-th (undeflated) old */
- /* singular value. */
- /* DIFR (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ). */
- /* On entry, DIFR(I, 1) contains the distances between I-th */
- /* updated (undeflated) singular value and the I+1-th */
- /* (undeflated) old singular value. And DIFR(I, 2) is the */
- /* normalizing factor for the I-th right singular vector. */
- /* Z (input) DOUBLE PRECISION array, dimension ( K ) */
- /* Contain the components of the deflation-adjusted updating row */
- /* vector. */
- /* K (input) INTEGER */
- /* Contains the dimension of the non-deflated matrix, */
- /* This is the order of the related secular equation. 1 <= K <=N. */
- /* C (input) DOUBLE PRECISION */
- /* C contains garbage if SQRE =0 and the C-value of a Givens */
- /* rotation related to the right null space if SQRE = 1. */
- /* S (input) DOUBLE PRECISION */
- /* S contains garbage if SQRE =0 and the S-value of a Givens */
- /* rotation related to the right null space if SQRE = 1. */
- /* WORK (workspace) DOUBLE PRECISION array, dimension ( K ) */
- /* INFO (output) INTEGER */
- /* = 0: successful exit. */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* Further Details */
- /* =============== */
- /* Based on contributions by */
- /* Ming Gu and Ren-Cang Li, Computer Science Division, University of */
- /* California at Berkeley, USA */
- /* Osni Marques, LBNL/NERSC, USA */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- bx_dim1 = *ldbx;
- bx_offset = 1 + bx_dim1;
- bx -= bx_offset;
- --perm;
- givcol_dim1 = *ldgcol;
- givcol_offset = 1 + givcol_dim1;
- givcol -= givcol_offset;
- difr_dim1 = *ldgnum;
- difr_offset = 1 + difr_dim1;
- difr -= difr_offset;
- poles_dim1 = *ldgnum;
- poles_offset = 1 + poles_dim1;
- poles -= poles_offset;
- givnum_dim1 = *ldgnum;
- givnum_offset = 1 + givnum_dim1;
- givnum -= givnum_offset;
- --difl;
- --z__;
- --work;
- /* Function Body */
- *info = 0;
- if (*icompq < 0 || *icompq > 1) {
- *info = -1;
- } else if (*nl < 1) {
- *info = -2;
- } else if (*nr < 1) {
- *info = -3;
- } else if (*sqre < 0 || *sqre > 1) {
- *info = -4;
- }
- n = *nl + *nr + 1;
- if (*nrhs < 1) {
- *info = -5;
- } else if (*ldb < n) {
- *info = -7;
- } else if (*ldbx < n) {
- *info = -9;
- } else if (*givptr < 0) {
- *info = -11;
- } else if (*ldgcol < n) {
- *info = -13;
- } else if (*ldgnum < n) {
- *info = -15;
- } else if (*k < 1) {
- *info = -20;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DLALS0", &i__1);
- return 0;
- }
- m = n + *sqre;
- nlp1 = *nl + 1;
- if (*icompq == 0) {
- /* Apply back orthogonal transformations from the left. */
- /* Step (1L): apply back the Givens rotations performed. */
- i__1 = *givptr;
- for (i__ = 1; i__ <= i__1; ++i__) {
- _starpu_drot_(nrhs, &b[givcol[i__ + (givcol_dim1 << 1)] + b_dim1], ldb, &
- b[givcol[i__ + givcol_dim1] + b_dim1], ldb, &givnum[i__ +
- (givnum_dim1 << 1)], &givnum[i__ + givnum_dim1]);
- /* L10: */
- }
- /* Step (2L): permute rows of B. */
- _starpu_dcopy_(nrhs, &b[nlp1 + b_dim1], ldb, &bx[bx_dim1 + 1], ldbx);
- i__1 = n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- _starpu_dcopy_(nrhs, &b[perm[i__] + b_dim1], ldb, &bx[i__ + bx_dim1],
- ldbx);
- /* L20: */
- }
- /* Step (3L): apply the inverse of the left singular vector */
- /* matrix to BX. */
- if (*k == 1) {
- _starpu_dcopy_(nrhs, &bx[bx_offset], ldbx, &b[b_offset], ldb);
- if (z__[1] < 0.) {
- _starpu_dscal_(nrhs, &c_b5, &b[b_offset], ldb);
- }
- } else {
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- diflj = difl[j];
- dj = poles[j + poles_dim1];
- dsigj = -poles[j + (poles_dim1 << 1)];
- if (j < *k) {
- difrj = -difr[j + difr_dim1];
- dsigjp = -poles[j + 1 + (poles_dim1 << 1)];
- }
- if (z__[j] == 0. || poles[j + (poles_dim1 << 1)] == 0.) {
- work[j] = 0.;
- } else {
- work[j] = -poles[j + (poles_dim1 << 1)] * z__[j] / diflj /
- (poles[j + (poles_dim1 << 1)] + dj);
- }
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- if (z__[i__] == 0. || poles[i__ + (poles_dim1 << 1)] ==
- 0.) {
- work[i__] = 0.;
- } else {
- work[i__] = poles[i__ + (poles_dim1 << 1)] * z__[i__]
- / (_starpu_dlamc3_(&poles[i__ + (poles_dim1 << 1)], &
- dsigj) - diflj) / (poles[i__ + (poles_dim1 <<
- 1)] + dj);
- }
- /* L30: */
- }
- i__2 = *k;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- if (z__[i__] == 0. || poles[i__ + (poles_dim1 << 1)] ==
- 0.) {
- work[i__] = 0.;
- } else {
- work[i__] = poles[i__ + (poles_dim1 << 1)] * z__[i__]
- / (_starpu_dlamc3_(&poles[i__ + (poles_dim1 << 1)], &
- dsigjp) + difrj) / (poles[i__ + (poles_dim1 <<
- 1)] + dj);
- }
- /* L40: */
- }
- work[1] = -1.;
- temp = _starpu_dnrm2_(k, &work[1], &c__1);
- _starpu_dgemv_("T", k, nrhs, &c_b11, &bx[bx_offset], ldbx, &work[1], &
- c__1, &c_b13, &b[j + b_dim1], ldb);
- _starpu_dlascl_("G", &c__0, &c__0, &temp, &c_b11, &c__1, nrhs, &b[j +
- b_dim1], ldb, info);
- /* L50: */
- }
- }
- /* Move the deflated rows of BX to B also. */
- if (*k < max(m,n)) {
- i__1 = n - *k;
- _starpu_dlacpy_("A", &i__1, nrhs, &bx[*k + 1 + bx_dim1], ldbx, &b[*k + 1
- + b_dim1], ldb);
- }
- } else {
- /* Apply back the right orthogonal transformations. */
- /* Step (1R): apply back the new right singular vector matrix */
- /* to B. */
- if (*k == 1) {
- _starpu_dcopy_(nrhs, &b[b_offset], ldb, &bx[bx_offset], ldbx);
- } else {
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- dsigj = poles[j + (poles_dim1 << 1)];
- if (z__[j] == 0.) {
- work[j] = 0.;
- } else {
- work[j] = -z__[j] / difl[j] / (dsigj + poles[j +
- poles_dim1]) / difr[j + (difr_dim1 << 1)];
- }
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- if (z__[j] == 0.) {
- work[i__] = 0.;
- } else {
- d__1 = -poles[i__ + 1 + (poles_dim1 << 1)];
- work[i__] = z__[j] / (_starpu_dlamc3_(&dsigj, &d__1) - difr[
- i__ + difr_dim1]) / (dsigj + poles[i__ +
- poles_dim1]) / difr[i__ + (difr_dim1 << 1)];
- }
- /* L60: */
- }
- i__2 = *k;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- if (z__[j] == 0.) {
- work[i__] = 0.;
- } else {
- d__1 = -poles[i__ + (poles_dim1 << 1)];
- work[i__] = z__[j] / (_starpu_dlamc3_(&dsigj, &d__1) - difl[
- i__]) / (dsigj + poles[i__ + poles_dim1]) /
- difr[i__ + (difr_dim1 << 1)];
- }
- /* L70: */
- }
- _starpu_dgemv_("T", k, nrhs, &c_b11, &b[b_offset], ldb, &work[1], &
- c__1, &c_b13, &bx[j + bx_dim1], ldbx);
- /* L80: */
- }
- }
- /* Step (2R): if SQRE = 1, apply back the rotation that is */
- /* related to the right null space of the subproblem. */
- if (*sqre == 1) {
- _starpu_dcopy_(nrhs, &b[m + b_dim1], ldb, &bx[m + bx_dim1], ldbx);
- _starpu_drot_(nrhs, &bx[bx_dim1 + 1], ldbx, &bx[m + bx_dim1], ldbx, c__,
- s);
- }
- if (*k < max(m,n)) {
- i__1 = n - *k;
- _starpu_dlacpy_("A", &i__1, nrhs, &b[*k + 1 + b_dim1], ldb, &bx[*k + 1 +
- bx_dim1], ldbx);
- }
- /* Step (3R): permute rows of B. */
- _starpu_dcopy_(nrhs, &bx[bx_dim1 + 1], ldbx, &b[nlp1 + b_dim1], ldb);
- if (*sqre == 1) {
- _starpu_dcopy_(nrhs, &bx[m + bx_dim1], ldbx, &b[m + b_dim1], ldb);
- }
- i__1 = n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- _starpu_dcopy_(nrhs, &bx[i__ + bx_dim1], ldbx, &b[perm[i__] + b_dim1],
- ldb);
- /* L90: */
- }
- /* Step (4R): apply back the Givens rotations performed. */
- for (i__ = *givptr; i__ >= 1; --i__) {
- d__1 = -givnum[i__ + givnum_dim1];
- _starpu_drot_(nrhs, &b[givcol[i__ + (givcol_dim1 << 1)] + b_dim1], ldb, &
- b[givcol[i__ + givcol_dim1] + b_dim1], ldb, &givnum[i__ +
- (givnum_dim1 << 1)], &d__1);
- /* L100: */
- }
- }
- return 0;
- /* End of DLALS0 */
- } /* _starpu_dlals0_ */
|