123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352 |
- /* dlagts.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Subroutine */ int _starpu_dlagts_(integer *job, integer *n, doublereal *a,
- doublereal *b, doublereal *c__, doublereal *d__, integer *in,
- doublereal *y, doublereal *tol, integer *info)
- {
- /* System generated locals */
- integer i__1;
- doublereal d__1, d__2, d__3, d__4, d__5;
- /* Builtin functions */
- double d_sign(doublereal *, doublereal *);
- /* Local variables */
- integer k;
- doublereal ak, eps, temp, pert, absak, sfmin;
- extern doublereal _starpu_dlamch_(char *);
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- doublereal bignum;
- /* -- LAPACK auxiliary routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLAGTS may be used to solve one of the systems of equations */
- /* (T - lambda*I)*x = y or (T - lambda*I)'*x = y, */
- /* where T is an n by n tridiagonal matrix, for x, following the */
- /* factorization of (T - lambda*I) as */
- /* (T - lambda*I) = P*L*U , */
- /* by routine DLAGTF. The choice of equation to be solved is */
- /* controlled by the argument JOB, and in each case there is an option */
- /* to perturb zero or very small diagonal elements of U, this option */
- /* being intended for use in applications such as inverse iteration. */
- /* Arguments */
- /* ========= */
- /* JOB (input) INTEGER */
- /* Specifies the job to be performed by DLAGTS as follows: */
- /* = 1: The equations (T - lambda*I)x = y are to be solved, */
- /* but diagonal elements of U are not to be perturbed. */
- /* = -1: The equations (T - lambda*I)x = y are to be solved */
- /* and, if overflow would otherwise occur, the diagonal */
- /* elements of U are to be perturbed. See argument TOL */
- /* below. */
- /* = 2: The equations (T - lambda*I)'x = y are to be solved, */
- /* but diagonal elements of U are not to be perturbed. */
- /* = -2: The equations (T - lambda*I)'x = y are to be solved */
- /* and, if overflow would otherwise occur, the diagonal */
- /* elements of U are to be perturbed. See argument TOL */
- /* below. */
- /* N (input) INTEGER */
- /* The order of the matrix T. */
- /* A (input) DOUBLE PRECISION array, dimension (N) */
- /* On entry, A must contain the diagonal elements of U as */
- /* returned from DLAGTF. */
- /* B (input) DOUBLE PRECISION array, dimension (N-1) */
- /* On entry, B must contain the first super-diagonal elements of */
- /* U as returned from DLAGTF. */
- /* C (input) DOUBLE PRECISION array, dimension (N-1) */
- /* On entry, C must contain the sub-diagonal elements of L as */
- /* returned from DLAGTF. */
- /* D (input) DOUBLE PRECISION array, dimension (N-2) */
- /* On entry, D must contain the second super-diagonal elements */
- /* of U as returned from DLAGTF. */
- /* IN (input) INTEGER array, dimension (N) */
- /* On entry, IN must contain details of the matrix P as returned */
- /* from DLAGTF. */
- /* Y (input/output) DOUBLE PRECISION array, dimension (N) */
- /* On entry, the right hand side vector y. */
- /* On exit, Y is overwritten by the solution vector x. */
- /* TOL (input/output) DOUBLE PRECISION */
- /* On entry, with JOB .lt. 0, TOL should be the minimum */
- /* perturbation to be made to very small diagonal elements of U. */
- /* TOL should normally be chosen as about eps*norm(U), where eps */
- /* is the relative machine precision, but if TOL is supplied as */
- /* non-positive, then it is reset to eps*max( abs( u(i,j) ) ). */
- /* If JOB .gt. 0 then TOL is not referenced. */
- /* On exit, TOL is changed as described above, only if TOL is */
- /* non-positive on entry. Otherwise TOL is unchanged. */
- /* INFO (output) INTEGER */
- /* = 0 : successful exit */
- /* .lt. 0: if INFO = -i, the i-th argument had an illegal value */
- /* .gt. 0: overflow would occur when computing the INFO(th) */
- /* element of the solution vector x. This can only occur */
- /* when JOB is supplied as positive and either means */
- /* that a diagonal element of U is very small, or that */
- /* the elements of the right-hand side vector y are very */
- /* large. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Parameter adjustments */
- --y;
- --in;
- --d__;
- --c__;
- --b;
- --a;
- /* Function Body */
- *info = 0;
- if (abs(*job) > 2 || *job == 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DLAGTS", &i__1);
- return 0;
- }
- if (*n == 0) {
- return 0;
- }
- eps = _starpu_dlamch_("Epsilon");
- sfmin = _starpu_dlamch_("Safe minimum");
- bignum = 1. / sfmin;
- if (*job < 0) {
- if (*tol <= 0.) {
- *tol = abs(a[1]);
- if (*n > 1) {
- /* Computing MAX */
- d__1 = *tol, d__2 = abs(a[2]), d__1 = max(d__1,d__2), d__2 =
- abs(b[1]);
- *tol = max(d__1,d__2);
- }
- i__1 = *n;
- for (k = 3; k <= i__1; ++k) {
- /* Computing MAX */
- d__4 = *tol, d__5 = (d__1 = a[k], abs(d__1)), d__4 = max(d__4,
- d__5), d__5 = (d__2 = b[k - 1], abs(d__2)), d__4 =
- max(d__4,d__5), d__5 = (d__3 = d__[k - 2], abs(d__3));
- *tol = max(d__4,d__5);
- /* L10: */
- }
- *tol *= eps;
- if (*tol == 0.) {
- *tol = eps;
- }
- }
- }
- if (abs(*job) == 1) {
- i__1 = *n;
- for (k = 2; k <= i__1; ++k) {
- if (in[k - 1] == 0) {
- y[k] -= c__[k - 1] * y[k - 1];
- } else {
- temp = y[k - 1];
- y[k - 1] = y[k];
- y[k] = temp - c__[k - 1] * y[k];
- }
- /* L20: */
- }
- if (*job == 1) {
- for (k = *n; k >= 1; --k) {
- if (k <= *n - 2) {
- temp = y[k] - b[k] * y[k + 1] - d__[k] * y[k + 2];
- } else if (k == *n - 1) {
- temp = y[k] - b[k] * y[k + 1];
- } else {
- temp = y[k];
- }
- ak = a[k];
- absak = abs(ak);
- if (absak < 1.) {
- if (absak < sfmin) {
- if (absak == 0. || abs(temp) * sfmin > absak) {
- *info = k;
- return 0;
- } else {
- temp *= bignum;
- ak *= bignum;
- }
- } else if (abs(temp) > absak * bignum) {
- *info = k;
- return 0;
- }
- }
- y[k] = temp / ak;
- /* L30: */
- }
- } else {
- for (k = *n; k >= 1; --k) {
- if (k <= *n - 2) {
- temp = y[k] - b[k] * y[k + 1] - d__[k] * y[k + 2];
- } else if (k == *n - 1) {
- temp = y[k] - b[k] * y[k + 1];
- } else {
- temp = y[k];
- }
- ak = a[k];
- pert = d_sign(tol, &ak);
- L40:
- absak = abs(ak);
- if (absak < 1.) {
- if (absak < sfmin) {
- if (absak == 0. || abs(temp) * sfmin > absak) {
- ak += pert;
- pert *= 2;
- goto L40;
- } else {
- temp *= bignum;
- ak *= bignum;
- }
- } else if (abs(temp) > absak * bignum) {
- ak += pert;
- pert *= 2;
- goto L40;
- }
- }
- y[k] = temp / ak;
- /* L50: */
- }
- }
- } else {
- /* Come to here if JOB = 2 or -2 */
- if (*job == 2) {
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
- if (k >= 3) {
- temp = y[k] - b[k - 1] * y[k - 1] - d__[k - 2] * y[k - 2];
- } else if (k == 2) {
- temp = y[k] - b[k - 1] * y[k - 1];
- } else {
- temp = y[k];
- }
- ak = a[k];
- absak = abs(ak);
- if (absak < 1.) {
- if (absak < sfmin) {
- if (absak == 0. || abs(temp) * sfmin > absak) {
- *info = k;
- return 0;
- } else {
- temp *= bignum;
- ak *= bignum;
- }
- } else if (abs(temp) > absak * bignum) {
- *info = k;
- return 0;
- }
- }
- y[k] = temp / ak;
- /* L60: */
- }
- } else {
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
- if (k >= 3) {
- temp = y[k] - b[k - 1] * y[k - 1] - d__[k - 2] * y[k - 2];
- } else if (k == 2) {
- temp = y[k] - b[k - 1] * y[k - 1];
- } else {
- temp = y[k];
- }
- ak = a[k];
- pert = d_sign(tol, &ak);
- L70:
- absak = abs(ak);
- if (absak < 1.) {
- if (absak < sfmin) {
- if (absak == 0. || abs(temp) * sfmin > absak) {
- ak += pert;
- pert *= 2;
- goto L70;
- } else {
- temp *= bignum;
- ak *= bignum;
- }
- } else if (abs(temp) > absak * bignum) {
- ak += pert;
- pert *= 2;
- goto L70;
- }
- }
- y[k] = temp / ak;
- /* L80: */
- }
- }
- for (k = *n; k >= 2; --k) {
- if (in[k - 1] == 0) {
- y[k - 1] -= c__[k - 1] * y[k];
- } else {
- temp = y[k - 1];
- y[k - 1] = y[k];
- y[k] = temp - c__[k - 1] * y[k];
- }
- /* L90: */
- }
- }
- /* End of DLAGTS */
- return 0;
- } /* _starpu_dlagts_ */
|