123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255 |
- /* dlagtm.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Subroutine */ int _starpu_dlagtm_(char *trans, integer *n, integer *nrhs,
- doublereal *alpha, doublereal *dl, doublereal *d__, doublereal *du,
- doublereal *x, integer *ldx, doublereal *beta, doublereal *b, integer
- *ldb)
- {
- /* System generated locals */
- integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2;
- /* Local variables */
- integer i__, j;
- extern logical _starpu_lsame_(char *, char *);
- /* -- LAPACK auxiliary routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLAGTM performs a matrix-vector product of the form */
- /* B := alpha * A * X + beta * B */
- /* where A is a tridiagonal matrix of order N, B and X are N by NRHS */
- /* matrices, and alpha and beta are real scalars, each of which may be */
- /* 0., 1., or -1. */
- /* Arguments */
- /* ========= */
- /* TRANS (input) CHARACTER*1 */
- /* Specifies the operation applied to A. */
- /* = 'N': No transpose, B := alpha * A * X + beta * B */
- /* = 'T': Transpose, B := alpha * A'* X + beta * B */
- /* = 'C': Conjugate transpose = Transpose */
- /* N (input) INTEGER */
- /* The order of the matrix A. N >= 0. */
- /* NRHS (input) INTEGER */
- /* The number of right hand sides, i.e., the number of columns */
- /* of the matrices X and B. */
- /* ALPHA (input) DOUBLE PRECISION */
- /* The scalar alpha. ALPHA must be 0., 1., or -1.; otherwise, */
- /* it is assumed to be 0. */
- /* DL (input) DOUBLE PRECISION array, dimension (N-1) */
- /* The (n-1) sub-diagonal elements of T. */
- /* D (input) DOUBLE PRECISION array, dimension (N) */
- /* The diagonal elements of T. */
- /* DU (input) DOUBLE PRECISION array, dimension (N-1) */
- /* The (n-1) super-diagonal elements of T. */
- /* X (input) DOUBLE PRECISION array, dimension (LDX,NRHS) */
- /* The N by NRHS matrix X. */
- /* LDX (input) INTEGER */
- /* The leading dimension of the array X. LDX >= max(N,1). */
- /* BETA (input) DOUBLE PRECISION */
- /* The scalar beta. BETA must be 0., 1., or -1.; otherwise, */
- /* it is assumed to be 1. */
- /* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
- /* On entry, the N by NRHS matrix B. */
- /* On exit, B is overwritten by the matrix expression */
- /* B := alpha * A * X + beta * B. */
- /* LDB (input) INTEGER */
- /* The leading dimension of the array B. LDB >= max(N,1). */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Parameter adjustments */
- --dl;
- --d__;
- --du;
- x_dim1 = *ldx;
- x_offset = 1 + x_dim1;
- x -= x_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- /* Function Body */
- if (*n == 0) {
- return 0;
- }
- /* Multiply B by BETA if BETA.NE.1. */
- if (*beta == 0.) {
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] = 0.;
- /* L10: */
- }
- /* L20: */
- }
- } else if (*beta == -1.) {
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] = -b[i__ + j * b_dim1];
- /* L30: */
- }
- /* L40: */
- }
- }
- if (*alpha == 1.) {
- if (_starpu_lsame_(trans, "N")) {
- /* Compute B := B + A*X */
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- if (*n == 1) {
- b[j * b_dim1 + 1] += d__[1] * x[j * x_dim1 + 1];
- } else {
- b[j * b_dim1 + 1] = b[j * b_dim1 + 1] + d__[1] * x[j *
- x_dim1 + 1] + du[1] * x[j * x_dim1 + 2];
- b[*n + j * b_dim1] = b[*n + j * b_dim1] + dl[*n - 1] * x[*
- n - 1 + j * x_dim1] + d__[*n] * x[*n + j * x_dim1]
- ;
- i__2 = *n - 1;
- for (i__ = 2; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] = b[i__ + j * b_dim1] + dl[i__ -
- 1] * x[i__ - 1 + j * x_dim1] + d__[i__] * x[
- i__ + j * x_dim1] + du[i__] * x[i__ + 1 + j *
- x_dim1];
- /* L50: */
- }
- }
- /* L60: */
- }
- } else {
- /* Compute B := B + A'*X */
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- if (*n == 1) {
- b[j * b_dim1 + 1] += d__[1] * x[j * x_dim1 + 1];
- } else {
- b[j * b_dim1 + 1] = b[j * b_dim1 + 1] + d__[1] * x[j *
- x_dim1 + 1] + dl[1] * x[j * x_dim1 + 2];
- b[*n + j * b_dim1] = b[*n + j * b_dim1] + du[*n - 1] * x[*
- n - 1 + j * x_dim1] + d__[*n] * x[*n + j * x_dim1]
- ;
- i__2 = *n - 1;
- for (i__ = 2; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] = b[i__ + j * b_dim1] + du[i__ -
- 1] * x[i__ - 1 + j * x_dim1] + d__[i__] * x[
- i__ + j * x_dim1] + dl[i__] * x[i__ + 1 + j *
- x_dim1];
- /* L70: */
- }
- }
- /* L80: */
- }
- }
- } else if (*alpha == -1.) {
- if (_starpu_lsame_(trans, "N")) {
- /* Compute B := B - A*X */
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- if (*n == 1) {
- b[j * b_dim1 + 1] -= d__[1] * x[j * x_dim1 + 1];
- } else {
- b[j * b_dim1 + 1] = b[j * b_dim1 + 1] - d__[1] * x[j *
- x_dim1 + 1] - du[1] * x[j * x_dim1 + 2];
- b[*n + j * b_dim1] = b[*n + j * b_dim1] - dl[*n - 1] * x[*
- n - 1 + j * x_dim1] - d__[*n] * x[*n + j * x_dim1]
- ;
- i__2 = *n - 1;
- for (i__ = 2; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] = b[i__ + j * b_dim1] - dl[i__ -
- 1] * x[i__ - 1 + j * x_dim1] - d__[i__] * x[
- i__ + j * x_dim1] - du[i__] * x[i__ + 1 + j *
- x_dim1];
- /* L90: */
- }
- }
- /* L100: */
- }
- } else {
- /* Compute B := B - A'*X */
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- if (*n == 1) {
- b[j * b_dim1 + 1] -= d__[1] * x[j * x_dim1 + 1];
- } else {
- b[j * b_dim1 + 1] = b[j * b_dim1 + 1] - d__[1] * x[j *
- x_dim1 + 1] - dl[1] * x[j * x_dim1 + 2];
- b[*n + j * b_dim1] = b[*n + j * b_dim1] - du[*n - 1] * x[*
- n - 1 + j * x_dim1] - d__[*n] * x[*n + j * x_dim1]
- ;
- i__2 = *n - 1;
- for (i__ = 2; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] = b[i__ + j * b_dim1] - du[i__ -
- 1] * x[i__ - 1 + j * x_dim1] - d__[i__] * x[
- i__ + j * x_dim1] - dl[i__] * x[i__ + 1 + j *
- x_dim1];
- /* L110: */
- }
- }
- /* L120: */
- }
- }
- }
- return 0;
- /* End of DLAGTM */
- } /* _starpu_dlagtm_ */
|