123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225 |
- /* dlagtf.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Subroutine */ int _starpu_dlagtf_(integer *n, doublereal *a, doublereal *lambda,
- doublereal *b, doublereal *c__, doublereal *tol, doublereal *d__,
- integer *in, integer *info)
- {
- /* System generated locals */
- integer i__1;
- doublereal d__1, d__2;
- /* Local variables */
- integer k;
- doublereal tl, eps, piv1, piv2, temp, mult, scale1, scale2;
- extern doublereal _starpu_dlamch_(char *);
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLAGTF factorizes the matrix (T - lambda*I), where T is an n by n */
- /* tridiagonal matrix and lambda is a scalar, as */
- /* T - lambda*I = PLU, */
- /* where P is a permutation matrix, L is a unit lower tridiagonal matrix */
- /* with at most one non-zero sub-diagonal elements per column and U is */
- /* an upper triangular matrix with at most two non-zero super-diagonal */
- /* elements per column. */
- /* The factorization is obtained by Gaussian elimination with partial */
- /* pivoting and implicit row scaling. */
- /* The parameter LAMBDA is included in the routine so that DLAGTF may */
- /* be used, in conjunction with DLAGTS, to obtain eigenvectors of T by */
- /* inverse iteration. */
- /* Arguments */
- /* ========= */
- /* N (input) INTEGER */
- /* The order of the matrix T. */
- /* A (input/output) DOUBLE PRECISION array, dimension (N) */
- /* On entry, A must contain the diagonal elements of T. */
- /* On exit, A is overwritten by the n diagonal elements of the */
- /* upper triangular matrix U of the factorization of T. */
- /* LAMBDA (input) DOUBLE PRECISION */
- /* On entry, the scalar lambda. */
- /* B (input/output) DOUBLE PRECISION array, dimension (N-1) */
- /* On entry, B must contain the (n-1) super-diagonal elements of */
- /* T. */
- /* On exit, B is overwritten by the (n-1) super-diagonal */
- /* elements of the matrix U of the factorization of T. */
- /* C (input/output) DOUBLE PRECISION array, dimension (N-1) */
- /* On entry, C must contain the (n-1) sub-diagonal elements of */
- /* T. */
- /* On exit, C is overwritten by the (n-1) sub-diagonal elements */
- /* of the matrix L of the factorization of T. */
- /* TOL (input) DOUBLE PRECISION */
- /* On entry, a relative tolerance used to indicate whether or */
- /* not the matrix (T - lambda*I) is nearly singular. TOL should */
- /* normally be chose as approximately the largest relative error */
- /* in the elements of T. For example, if the elements of T are */
- /* correct to about 4 significant figures, then TOL should be */
- /* set to about 5*10**(-4). If TOL is supplied as less than eps, */
- /* where eps is the relative machine precision, then the value */
- /* eps is used in place of TOL. */
- /* D (output) DOUBLE PRECISION array, dimension (N-2) */
- /* On exit, D is overwritten by the (n-2) second super-diagonal */
- /* elements of the matrix U of the factorization of T. */
- /* IN (output) INTEGER array, dimension (N) */
- /* On exit, IN contains details of the permutation matrix P. If */
- /* an interchange occurred at the kth step of the elimination, */
- /* then IN(k) = 1, otherwise IN(k) = 0. The element IN(n) */
- /* returns the smallest positive integer j such that */
- /* abs( u(j,j) ).le. norm( (T - lambda*I)(j) )*TOL, */
- /* where norm( A(j) ) denotes the sum of the absolute values of */
- /* the jth row of the matrix A. If no such j exists then IN(n) */
- /* is returned as zero. If IN(n) is returned as positive, then a */
- /* diagonal element of U is small, indicating that */
- /* (T - lambda*I) is singular or nearly singular, */
- /* INFO (output) INTEGER */
- /* = 0 : successful exit */
- /* .lt. 0: if INFO = -k, the kth argument had an illegal value */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Parameter adjustments */
- --in;
- --d__;
- --c__;
- --b;
- --a;
- /* Function Body */
- *info = 0;
- if (*n < 0) {
- *info = -1;
- i__1 = -(*info);
- _starpu_xerbla_("DLAGTF", &i__1);
- return 0;
- }
- if (*n == 0) {
- return 0;
- }
- a[1] -= *lambda;
- in[*n] = 0;
- if (*n == 1) {
- if (a[1] == 0.) {
- in[1] = 1;
- }
- return 0;
- }
- eps = _starpu_dlamch_("Epsilon");
- tl = max(*tol,eps);
- scale1 = abs(a[1]) + abs(b[1]);
- i__1 = *n - 1;
- for (k = 1; k <= i__1; ++k) {
- a[k + 1] -= *lambda;
- scale2 = (d__1 = c__[k], abs(d__1)) + (d__2 = a[k + 1], abs(d__2));
- if (k < *n - 1) {
- scale2 += (d__1 = b[k + 1], abs(d__1));
- }
- if (a[k] == 0.) {
- piv1 = 0.;
- } else {
- piv1 = (d__1 = a[k], abs(d__1)) / scale1;
- }
- if (c__[k] == 0.) {
- in[k] = 0;
- piv2 = 0.;
- scale1 = scale2;
- if (k < *n - 1) {
- d__[k] = 0.;
- }
- } else {
- piv2 = (d__1 = c__[k], abs(d__1)) / scale2;
- if (piv2 <= piv1) {
- in[k] = 0;
- scale1 = scale2;
- c__[k] /= a[k];
- a[k + 1] -= c__[k] * b[k];
- if (k < *n - 1) {
- d__[k] = 0.;
- }
- } else {
- in[k] = 1;
- mult = a[k] / c__[k];
- a[k] = c__[k];
- temp = a[k + 1];
- a[k + 1] = b[k] - mult * temp;
- if (k < *n - 1) {
- d__[k] = b[k + 1];
- b[k + 1] = -mult * d__[k];
- }
- b[k] = temp;
- c__[k] = mult;
- }
- }
- if (max(piv1,piv2) <= tl && in[*n] == 0) {
- in[*n] = k;
- }
- /* L10: */
- }
- if ((d__1 = a[*n], abs(d__1)) <= scale1 * tl && in[*n] == 0) {
- in[*n] = *n;
- }
- return 0;
- /* End of DLAGTF */
- } /* _starpu_dlagtf_ */
|