123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357 |
- /* dlag2.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Subroutine */ int _starpu_dlag2_(doublereal *a, integer *lda, doublereal *b,
- integer *ldb, doublereal *safmin, doublereal *scale1, doublereal *
- scale2, doublereal *wr1, doublereal *wr2, doublereal *wi)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset;
- doublereal d__1, d__2, d__3, d__4, d__5, d__6;
- /* Builtin functions */
- double sqrt(doublereal), d_sign(doublereal *, doublereal *);
- /* Local variables */
- doublereal r__, c1, c2, c3, c4, c5, s1, s2, a11, a12, a21, a22, b11, b12,
- b22, pp, qq, ss, as11, as12, as22, sum, abi22, diff, bmin, wbig,
- wabs, wdet, binv11, binv22, discr, anorm, bnorm, bsize, shift,
- rtmin, rtmax, wsize, ascale, bscale, wscale, safmax, wsmall;
- /* -- LAPACK auxiliary routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLAG2 computes the eigenvalues of a 2 x 2 generalized eigenvalue */
- /* problem A - w B, with scaling as necessary to avoid over-/underflow. */
- /* The scaling factor "s" results in a modified eigenvalue equation */
- /* s A - w B */
- /* where s is a non-negative scaling factor chosen so that w, w B, */
- /* and s A do not overflow and, if possible, do not underflow, either. */
- /* Arguments */
- /* ========= */
- /* A (input) DOUBLE PRECISION array, dimension (LDA, 2) */
- /* On entry, the 2 x 2 matrix A. It is assumed that its 1-norm */
- /* is less than 1/SAFMIN. Entries less than */
- /* sqrt(SAFMIN)*norm(A) are subject to being treated as zero. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= 2. */
- /* B (input) DOUBLE PRECISION array, dimension (LDB, 2) */
- /* On entry, the 2 x 2 upper triangular matrix B. It is */
- /* assumed that the one-norm of B is less than 1/SAFMIN. The */
- /* diagonals should be at least sqrt(SAFMIN) times the largest */
- /* element of B (in absolute value); if a diagonal is smaller */
- /* than that, then +/- sqrt(SAFMIN) will be used instead of */
- /* that diagonal. */
- /* LDB (input) INTEGER */
- /* The leading dimension of the array B. LDB >= 2. */
- /* SAFMIN (input) DOUBLE PRECISION */
- /* The smallest positive number s.t. 1/SAFMIN does not */
- /* overflow. (This should always be DLAMCH('S') -- it is an */
- /* argument in order to avoid having to call DLAMCH frequently.) */
- /* SCALE1 (output) DOUBLE PRECISION */
- /* A scaling factor used to avoid over-/underflow in the */
- /* eigenvalue equation which defines the first eigenvalue. If */
- /* the eigenvalues are complex, then the eigenvalues are */
- /* ( WR1 +/- WI i ) / SCALE1 (which may lie outside the */
- /* exponent range of the machine), SCALE1=SCALE2, and SCALE1 */
- /* will always be positive. If the eigenvalues are real, then */
- /* the first (real) eigenvalue is WR1 / SCALE1 , but this may */
- /* overflow or underflow, and in fact, SCALE1 may be zero or */
- /* less than the underflow threshhold if the exact eigenvalue */
- /* is sufficiently large. */
- /* SCALE2 (output) DOUBLE PRECISION */
- /* A scaling factor used to avoid over-/underflow in the */
- /* eigenvalue equation which defines the second eigenvalue. If */
- /* the eigenvalues are complex, then SCALE2=SCALE1. If the */
- /* eigenvalues are real, then the second (real) eigenvalue is */
- /* WR2 / SCALE2 , but this may overflow or underflow, and in */
- /* fact, SCALE2 may be zero or less than the underflow */
- /* threshhold if the exact eigenvalue is sufficiently large. */
- /* WR1 (output) DOUBLE PRECISION */
- /* If the eigenvalue is real, then WR1 is SCALE1 times the */
- /* eigenvalue closest to the (2,2) element of A B**(-1). If the */
- /* eigenvalue is complex, then WR1=WR2 is SCALE1 times the real */
- /* part of the eigenvalues. */
- /* WR2 (output) DOUBLE PRECISION */
- /* If the eigenvalue is real, then WR2 is SCALE2 times the */
- /* other eigenvalue. If the eigenvalue is complex, then */
- /* WR1=WR2 is SCALE1 times the real part of the eigenvalues. */
- /* WI (output) DOUBLE PRECISION */
- /* If the eigenvalue is real, then WI is zero. If the */
- /* eigenvalue is complex, then WI is SCALE1 times the imaginary */
- /* part of the eigenvalues. WI will always be non-negative. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- /* Function Body */
- rtmin = sqrt(*safmin);
- rtmax = 1. / rtmin;
- safmax = 1. / *safmin;
- /* Scale A */
- /* Computing MAX */
- d__5 = (d__1 = a[a_dim1 + 1], abs(d__1)) + (d__2 = a[a_dim1 + 2], abs(
- d__2)), d__6 = (d__3 = a[(a_dim1 << 1) + 1], abs(d__3)) + (d__4 =
- a[(a_dim1 << 1) + 2], abs(d__4)), d__5 = max(d__5,d__6);
- anorm = max(d__5,*safmin);
- ascale = 1. / anorm;
- a11 = ascale * a[a_dim1 + 1];
- a21 = ascale * a[a_dim1 + 2];
- a12 = ascale * a[(a_dim1 << 1) + 1];
- a22 = ascale * a[(a_dim1 << 1) + 2];
- /* Perturb B if necessary to insure non-singularity */
- b11 = b[b_dim1 + 1];
- b12 = b[(b_dim1 << 1) + 1];
- b22 = b[(b_dim1 << 1) + 2];
- /* Computing MAX */
- d__1 = abs(b11), d__2 = abs(b12), d__1 = max(d__1,d__2), d__2 = abs(b22),
- d__1 = max(d__1,d__2);
- bmin = rtmin * max(d__1,rtmin);
- if (abs(b11) < bmin) {
- b11 = d_sign(&bmin, &b11);
- }
- if (abs(b22) < bmin) {
- b22 = d_sign(&bmin, &b22);
- }
- /* Scale B */
- /* Computing MAX */
- d__1 = abs(b11), d__2 = abs(b12) + abs(b22), d__1 = max(d__1,d__2);
- bnorm = max(d__1,*safmin);
- /* Computing MAX */
- d__1 = abs(b11), d__2 = abs(b22);
- bsize = max(d__1,d__2);
- bscale = 1. / bsize;
- b11 *= bscale;
- b12 *= bscale;
- b22 *= bscale;
- /* Compute larger eigenvalue by method described by C. van Loan */
- /* ( AS is A shifted by -SHIFT*B ) */
- binv11 = 1. / b11;
- binv22 = 1. / b22;
- s1 = a11 * binv11;
- s2 = a22 * binv22;
- if (abs(s1) <= abs(s2)) {
- as12 = a12 - s1 * b12;
- as22 = a22 - s1 * b22;
- ss = a21 * (binv11 * binv22);
- abi22 = as22 * binv22 - ss * b12;
- pp = abi22 * .5;
- shift = s1;
- } else {
- as12 = a12 - s2 * b12;
- as11 = a11 - s2 * b11;
- ss = a21 * (binv11 * binv22);
- abi22 = -ss * b12;
- pp = (as11 * binv11 + abi22) * .5;
- shift = s2;
- }
- qq = ss * as12;
- if ((d__1 = pp * rtmin, abs(d__1)) >= 1.) {
- /* Computing 2nd power */
- d__1 = rtmin * pp;
- discr = d__1 * d__1 + qq * *safmin;
- r__ = sqrt((abs(discr))) * rtmax;
- } else {
- /* Computing 2nd power */
- d__1 = pp;
- if (d__1 * d__1 + abs(qq) <= *safmin) {
- /* Computing 2nd power */
- d__1 = rtmax * pp;
- discr = d__1 * d__1 + qq * safmax;
- r__ = sqrt((abs(discr))) * rtmin;
- } else {
- /* Computing 2nd power */
- d__1 = pp;
- discr = d__1 * d__1 + qq;
- r__ = sqrt((abs(discr)));
- }
- }
- /* Note: the test of R in the following IF is to cover the case when */
- /* DISCR is small and negative and is flushed to zero during */
- /* the calculation of R. On machines which have a consistent */
- /* flush-to-zero threshhold and handle numbers above that */
- /* threshhold correctly, it would not be necessary. */
- if (discr >= 0. || r__ == 0.) {
- sum = pp + d_sign(&r__, &pp);
- diff = pp - d_sign(&r__, &pp);
- wbig = shift + sum;
- /* Compute smaller eigenvalue */
- wsmall = shift + diff;
- /* Computing MAX */
- d__1 = abs(wsmall);
- if (abs(wbig) * .5 > max(d__1,*safmin)) {
- wdet = (a11 * a22 - a12 * a21) * (binv11 * binv22);
- wsmall = wdet / wbig;
- }
- /* Choose (real) eigenvalue closest to 2,2 element of A*B**(-1) */
- /* for WR1. */
- if (pp > abi22) {
- *wr1 = min(wbig,wsmall);
- *wr2 = max(wbig,wsmall);
- } else {
- *wr1 = max(wbig,wsmall);
- *wr2 = min(wbig,wsmall);
- }
- *wi = 0.;
- } else {
- /* Complex eigenvalues */
- *wr1 = shift + pp;
- *wr2 = *wr1;
- *wi = r__;
- }
- /* Further scaling to avoid underflow and overflow in computing */
- /* SCALE1 and overflow in computing w*B. */
- /* This scale factor (WSCALE) is bounded from above using C1 and C2, */
- /* and from below using C3 and C4. */
- /* C1 implements the condition s A must never overflow. */
- /* C2 implements the condition w B must never overflow. */
- /* C3, with C2, */
- /* implement the condition that s A - w B must never overflow. */
- /* C4 implements the condition s should not underflow. */
- /* C5 implements the condition max(s,|w|) should be at least 2. */
- c1 = bsize * (*safmin * max(1.,ascale));
- c2 = *safmin * max(1.,bnorm);
- c3 = bsize * *safmin;
- if (ascale <= 1. && bsize <= 1.) {
- /* Computing MIN */
- d__1 = 1., d__2 = ascale / *safmin * bsize;
- c4 = min(d__1,d__2);
- } else {
- c4 = 1.;
- }
- if (ascale <= 1. || bsize <= 1.) {
- /* Computing MIN */
- d__1 = 1., d__2 = ascale * bsize;
- c5 = min(d__1,d__2);
- } else {
- c5 = 1.;
- }
- /* Scale first eigenvalue */
- wabs = abs(*wr1) + abs(*wi);
- /* Computing MAX */
- /* Computing MIN */
- d__3 = c4, d__4 = max(wabs,c5) * .5;
- d__1 = max(*safmin,c1), d__2 = (wabs * c2 + c3) * 1.0000100000000001,
- d__1 = max(d__1,d__2), d__2 = min(d__3,d__4);
- wsize = max(d__1,d__2);
- if (wsize != 1.) {
- wscale = 1. / wsize;
- if (wsize > 1.) {
- *scale1 = max(ascale,bsize) * wscale * min(ascale,bsize);
- } else {
- *scale1 = min(ascale,bsize) * wscale * max(ascale,bsize);
- }
- *wr1 *= wscale;
- if (*wi != 0.) {
- *wi *= wscale;
- *wr2 = *wr1;
- *scale2 = *scale1;
- }
- } else {
- *scale1 = ascale * bsize;
- *scale2 = *scale1;
- }
- /* Scale second eigenvalue (if real) */
- if (*wi == 0.) {
- /* Computing MAX */
- /* Computing MIN */
- /* Computing MAX */
- d__5 = abs(*wr2);
- d__3 = c4, d__4 = max(d__5,c5) * .5;
- d__1 = max(*safmin,c1), d__2 = (abs(*wr2) * c2 + c3) *
- 1.0000100000000001, d__1 = max(d__1,d__2), d__2 = min(d__3,
- d__4);
- wsize = max(d__1,d__2);
- if (wsize != 1.) {
- wscale = 1. / wsize;
- if (wsize > 1.) {
- *scale2 = max(ascale,bsize) * wscale * min(ascale,bsize);
- } else {
- *scale2 = min(ascale,bsize) * wscale * max(ascale,bsize);
- }
- *wr2 *= wscale;
- } else {
- *scale2 = ascale * bsize;
- }
- }
- /* End of DLAG2 */
- return 0;
- } /* _starpu_dlag2_ */
|