123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678 |
- /* dlaein.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- /* Subroutine */ int _starpu_dlaein_(logical *rightv, logical *noinit, integer *n,
- doublereal *h__, integer *ldh, doublereal *wr, doublereal *wi,
- doublereal *vr, doublereal *vi, doublereal *b, integer *ldb,
- doublereal *work, doublereal *eps3, doublereal *smlnum, doublereal *
- bignum, integer *info)
- {
- /* System generated locals */
- integer b_dim1, b_offset, h_dim1, h_offset, i__1, i__2, i__3, i__4;
- doublereal d__1, d__2, d__3, d__4;
- /* Builtin functions */
- double sqrt(doublereal);
- /* Local variables */
- integer i__, j;
- doublereal w, x, y;
- integer i1, i2, i3;
- doublereal w1, ei, ej, xi, xr, rec;
- integer its, ierr;
- doublereal temp, norm, vmax;
- extern doublereal _starpu_dnrm2_(integer *, doublereal *, integer *);
- extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *,
- integer *);
- doublereal scale;
- extern doublereal _starpu_dasum_(integer *, doublereal *, integer *);
- char trans[1];
- doublereal vcrit, rootn, vnorm;
- extern doublereal _starpu_dlapy2_(doublereal *, doublereal *);
- doublereal absbii, absbjj;
- extern integer _starpu_idamax_(integer *, doublereal *, integer *);
- extern /* Subroutine */ int _starpu_dladiv_(doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, doublereal *), _starpu_dlatrs_(
- char *, char *, char *, char *, integer *, doublereal *, integer *
- , doublereal *, doublereal *, doublereal *, integer *);
- char normin[1];
- doublereal nrmsml, growto;
- /* -- LAPACK auxiliary routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLAEIN uses inverse iteration to find a right or left eigenvector */
- /* corresponding to the eigenvalue (WR,WI) of a real upper Hessenberg */
- /* matrix H. */
- /* Arguments */
- /* ========= */
- /* RIGHTV (input) LOGICAL */
- /* = .TRUE. : compute right eigenvector; */
- /* = .FALSE.: compute left eigenvector. */
- /* NOINIT (input) LOGICAL */
- /* = .TRUE. : no initial vector supplied in (VR,VI). */
- /* = .FALSE.: initial vector supplied in (VR,VI). */
- /* N (input) INTEGER */
- /* The order of the matrix H. N >= 0. */
- /* H (input) DOUBLE PRECISION array, dimension (LDH,N) */
- /* The upper Hessenberg matrix H. */
- /* LDH (input) INTEGER */
- /* The leading dimension of the array H. LDH >= max(1,N). */
- /* WR (input) DOUBLE PRECISION */
- /* WI (input) DOUBLE PRECISION */
- /* The real and imaginary parts of the eigenvalue of H whose */
- /* corresponding right or left eigenvector is to be computed. */
- /* VR (input/output) DOUBLE PRECISION array, dimension (N) */
- /* VI (input/output) DOUBLE PRECISION array, dimension (N) */
- /* On entry, if NOINIT = .FALSE. and WI = 0.0, VR must contain */
- /* a real starting vector for inverse iteration using the real */
- /* eigenvalue WR; if NOINIT = .FALSE. and WI.ne.0.0, VR and VI */
- /* must contain the real and imaginary parts of a complex */
- /* starting vector for inverse iteration using the complex */
- /* eigenvalue (WR,WI); otherwise VR and VI need not be set. */
- /* On exit, if WI = 0.0 (real eigenvalue), VR contains the */
- /* computed real eigenvector; if WI.ne.0.0 (complex eigenvalue), */
- /* VR and VI contain the real and imaginary parts of the */
- /* computed complex eigenvector. The eigenvector is normalized */
- /* so that the component of largest magnitude has magnitude 1; */
- /* here the magnitude of a complex number (x,y) is taken to be */
- /* |x| + |y|. */
- /* VI is not referenced if WI = 0.0. */
- /* B (workspace) DOUBLE PRECISION array, dimension (LDB,N) */
- /* LDB (input) INTEGER */
- /* The leading dimension of the array B. LDB >= N+1. */
- /* WORK (workspace) DOUBLE PRECISION array, dimension (N) */
- /* EPS3 (input) DOUBLE PRECISION */
- /* A small machine-dependent value which is used to perturb */
- /* close eigenvalues, and to replace zero pivots. */
- /* SMLNUM (input) DOUBLE PRECISION */
- /* A machine-dependent value close to the underflow threshold. */
- /* BIGNUM (input) DOUBLE PRECISION */
- /* A machine-dependent value close to the overflow threshold. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* = 1: inverse iteration did not converge; VR is set to the */
- /* last iterate, and so is VI if WI.ne.0.0. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Parameter adjustments */
- h_dim1 = *ldh;
- h_offset = 1 + h_dim1;
- h__ -= h_offset;
- --vr;
- --vi;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- --work;
- /* Function Body */
- *info = 0;
- /* GROWTO is the threshold used in the acceptance test for an */
- /* eigenvector. */
- rootn = sqrt((doublereal) (*n));
- growto = .1 / rootn;
- /* Computing MAX */
- d__1 = 1., d__2 = *eps3 * rootn;
- nrmsml = max(d__1,d__2) * *smlnum;
- /* Form B = H - (WR,WI)*I (except that the subdiagonal elements and */
- /* the imaginary parts of the diagonal elements are not stored). */
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] = h__[i__ + j * h_dim1];
- /* L10: */
- }
- b[j + j * b_dim1] = h__[j + j * h_dim1] - *wr;
- /* L20: */
- }
- if (*wi == 0.) {
- /* Real eigenvalue. */
- if (*noinit) {
- /* Set initial vector. */
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- vr[i__] = *eps3;
- /* L30: */
- }
- } else {
- /* Scale supplied initial vector. */
- vnorm = _starpu_dnrm2_(n, &vr[1], &c__1);
- d__1 = *eps3 * rootn / max(vnorm,nrmsml);
- _starpu_dscal_(n, &d__1, &vr[1], &c__1);
- }
- if (*rightv) {
- /* LU decomposition with partial pivoting of B, replacing zero */
- /* pivots by EPS3. */
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- ei = h__[i__ + 1 + i__ * h_dim1];
- if ((d__1 = b[i__ + i__ * b_dim1], abs(d__1)) < abs(ei)) {
- /* Interchange rows and eliminate. */
- x = b[i__ + i__ * b_dim1] / ei;
- b[i__ + i__ * b_dim1] = ei;
- i__2 = *n;
- for (j = i__ + 1; j <= i__2; ++j) {
- temp = b[i__ + 1 + j * b_dim1];
- b[i__ + 1 + j * b_dim1] = b[i__ + j * b_dim1] - x *
- temp;
- b[i__ + j * b_dim1] = temp;
- /* L40: */
- }
- } else {
- /* Eliminate without interchange. */
- if (b[i__ + i__ * b_dim1] == 0.) {
- b[i__ + i__ * b_dim1] = *eps3;
- }
- x = ei / b[i__ + i__ * b_dim1];
- if (x != 0.) {
- i__2 = *n;
- for (j = i__ + 1; j <= i__2; ++j) {
- b[i__ + 1 + j * b_dim1] -= x * b[i__ + j * b_dim1]
- ;
- /* L50: */
- }
- }
- }
- /* L60: */
- }
- if (b[*n + *n * b_dim1] == 0.) {
- b[*n + *n * b_dim1] = *eps3;
- }
- *(unsigned char *)trans = 'N';
- } else {
- /* UL decomposition with partial pivoting of B, replacing zero */
- /* pivots by EPS3. */
- for (j = *n; j >= 2; --j) {
- ej = h__[j + (j - 1) * h_dim1];
- if ((d__1 = b[j + j * b_dim1], abs(d__1)) < abs(ej)) {
- /* Interchange columns and eliminate. */
- x = b[j + j * b_dim1] / ej;
- b[j + j * b_dim1] = ej;
- i__1 = j - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- temp = b[i__ + (j - 1) * b_dim1];
- b[i__ + (j - 1) * b_dim1] = b[i__ + j * b_dim1] - x *
- temp;
- b[i__ + j * b_dim1] = temp;
- /* L70: */
- }
- } else {
- /* Eliminate without interchange. */
- if (b[j + j * b_dim1] == 0.) {
- b[j + j * b_dim1] = *eps3;
- }
- x = ej / b[j + j * b_dim1];
- if (x != 0.) {
- i__1 = j - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- b[i__ + (j - 1) * b_dim1] -= x * b[i__ + j *
- b_dim1];
- /* L80: */
- }
- }
- }
- /* L90: */
- }
- if (b[b_dim1 + 1] == 0.) {
- b[b_dim1 + 1] = *eps3;
- }
- *(unsigned char *)trans = 'T';
- }
- *(unsigned char *)normin = 'N';
- i__1 = *n;
- for (its = 1; its <= i__1; ++its) {
- /* Solve U*x = scale*v for a right eigenvector */
- /* or U'*x = scale*v for a left eigenvector, */
- /* overwriting x on v. */
- _starpu_dlatrs_("Upper", trans, "Nonunit", normin, n, &b[b_offset], ldb, &
- vr[1], &scale, &work[1], &ierr);
- *(unsigned char *)normin = 'Y';
- /* Test for sufficient growth in the norm of v. */
- vnorm = _starpu_dasum_(n, &vr[1], &c__1);
- if (vnorm >= growto * scale) {
- goto L120;
- }
- /* Choose new orthogonal starting vector and try again. */
- temp = *eps3 / (rootn + 1.);
- vr[1] = *eps3;
- i__2 = *n;
- for (i__ = 2; i__ <= i__2; ++i__) {
- vr[i__] = temp;
- /* L100: */
- }
- vr[*n - its + 1] -= *eps3 * rootn;
- /* L110: */
- }
- /* Failure to find eigenvector in N iterations. */
- *info = 1;
- L120:
- /* Normalize eigenvector. */
- i__ = _starpu_idamax_(n, &vr[1], &c__1);
- d__2 = 1. / (d__1 = vr[i__], abs(d__1));
- _starpu_dscal_(n, &d__2, &vr[1], &c__1);
- } else {
- /* Complex eigenvalue. */
- if (*noinit) {
- /* Set initial vector. */
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- vr[i__] = *eps3;
- vi[i__] = 0.;
- /* L130: */
- }
- } else {
- /* Scale supplied initial vector. */
- d__1 = _starpu_dnrm2_(n, &vr[1], &c__1);
- d__2 = _starpu_dnrm2_(n, &vi[1], &c__1);
- norm = _starpu_dlapy2_(&d__1, &d__2);
- rec = *eps3 * rootn / max(norm,nrmsml);
- _starpu_dscal_(n, &rec, &vr[1], &c__1);
- _starpu_dscal_(n, &rec, &vi[1], &c__1);
- }
- if (*rightv) {
- /* LU decomposition with partial pivoting of B, replacing zero */
- /* pivots by EPS3. */
- /* The imaginary part of the (i,j)-th element of U is stored in */
- /* B(j+1,i). */
- b[b_dim1 + 2] = -(*wi);
- i__1 = *n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- b[i__ + 1 + b_dim1] = 0.;
- /* L140: */
- }
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- absbii = _starpu_dlapy2_(&b[i__ + i__ * b_dim1], &b[i__ + 1 + i__ *
- b_dim1]);
- ei = h__[i__ + 1 + i__ * h_dim1];
- if (absbii < abs(ei)) {
- /* Interchange rows and eliminate. */
- xr = b[i__ + i__ * b_dim1] / ei;
- xi = b[i__ + 1 + i__ * b_dim1] / ei;
- b[i__ + i__ * b_dim1] = ei;
- b[i__ + 1 + i__ * b_dim1] = 0.;
- i__2 = *n;
- for (j = i__ + 1; j <= i__2; ++j) {
- temp = b[i__ + 1 + j * b_dim1];
- b[i__ + 1 + j * b_dim1] = b[i__ + j * b_dim1] - xr *
- temp;
- b[j + 1 + (i__ + 1) * b_dim1] = b[j + 1 + i__ *
- b_dim1] - xi * temp;
- b[i__ + j * b_dim1] = temp;
- b[j + 1 + i__ * b_dim1] = 0.;
- /* L150: */
- }
- b[i__ + 2 + i__ * b_dim1] = -(*wi);
- b[i__ + 1 + (i__ + 1) * b_dim1] -= xi * *wi;
- b[i__ + 2 + (i__ + 1) * b_dim1] += xr * *wi;
- } else {
- /* Eliminate without interchanging rows. */
- if (absbii == 0.) {
- b[i__ + i__ * b_dim1] = *eps3;
- b[i__ + 1 + i__ * b_dim1] = 0.;
- absbii = *eps3;
- }
- ei = ei / absbii / absbii;
- xr = b[i__ + i__ * b_dim1] * ei;
- xi = -b[i__ + 1 + i__ * b_dim1] * ei;
- i__2 = *n;
- for (j = i__ + 1; j <= i__2; ++j) {
- b[i__ + 1 + j * b_dim1] = b[i__ + 1 + j * b_dim1] -
- xr * b[i__ + j * b_dim1] + xi * b[j + 1 + i__
- * b_dim1];
- b[j + 1 + (i__ + 1) * b_dim1] = -xr * b[j + 1 + i__ *
- b_dim1] - xi * b[i__ + j * b_dim1];
- /* L160: */
- }
- b[i__ + 2 + (i__ + 1) * b_dim1] -= *wi;
- }
- /* Compute 1-norm of offdiagonal elements of i-th row. */
- i__2 = *n - i__;
- i__3 = *n - i__;
- work[i__] = _starpu_dasum_(&i__2, &b[i__ + (i__ + 1) * b_dim1], ldb)
- + _starpu_dasum_(&i__3, &b[i__ + 2 + i__ * b_dim1], &c__1);
- /* L170: */
- }
- if (b[*n + *n * b_dim1] == 0. && b[*n + 1 + *n * b_dim1] == 0.) {
- b[*n + *n * b_dim1] = *eps3;
- }
- work[*n] = 0.;
- i1 = *n;
- i2 = 1;
- i3 = -1;
- } else {
- /* UL decomposition with partial pivoting of conjg(B), */
- /* replacing zero pivots by EPS3. */
- /* The imaginary part of the (i,j)-th element of U is stored in */
- /* B(j+1,i). */
- b[*n + 1 + *n * b_dim1] = *wi;
- i__1 = *n - 1;
- for (j = 1; j <= i__1; ++j) {
- b[*n + 1 + j * b_dim1] = 0.;
- /* L180: */
- }
- for (j = *n; j >= 2; --j) {
- ej = h__[j + (j - 1) * h_dim1];
- absbjj = _starpu_dlapy2_(&b[j + j * b_dim1], &b[j + 1 + j * b_dim1]);
- if (absbjj < abs(ej)) {
- /* Interchange columns and eliminate */
- xr = b[j + j * b_dim1] / ej;
- xi = b[j + 1 + j * b_dim1] / ej;
- b[j + j * b_dim1] = ej;
- b[j + 1 + j * b_dim1] = 0.;
- i__1 = j - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- temp = b[i__ + (j - 1) * b_dim1];
- b[i__ + (j - 1) * b_dim1] = b[i__ + j * b_dim1] - xr *
- temp;
- b[j + i__ * b_dim1] = b[j + 1 + i__ * b_dim1] - xi *
- temp;
- b[i__ + j * b_dim1] = temp;
- b[j + 1 + i__ * b_dim1] = 0.;
- /* L190: */
- }
- b[j + 1 + (j - 1) * b_dim1] = *wi;
- b[j - 1 + (j - 1) * b_dim1] += xi * *wi;
- b[j + (j - 1) * b_dim1] -= xr * *wi;
- } else {
- /* Eliminate without interchange. */
- if (absbjj == 0.) {
- b[j + j * b_dim1] = *eps3;
- b[j + 1 + j * b_dim1] = 0.;
- absbjj = *eps3;
- }
- ej = ej / absbjj / absbjj;
- xr = b[j + j * b_dim1] * ej;
- xi = -b[j + 1 + j * b_dim1] * ej;
- i__1 = j - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- b[i__ + (j - 1) * b_dim1] = b[i__ + (j - 1) * b_dim1]
- - xr * b[i__ + j * b_dim1] + xi * b[j + 1 +
- i__ * b_dim1];
- b[j + i__ * b_dim1] = -xr * b[j + 1 + i__ * b_dim1] -
- xi * b[i__ + j * b_dim1];
- /* L200: */
- }
- b[j + (j - 1) * b_dim1] += *wi;
- }
- /* Compute 1-norm of offdiagonal elements of j-th column. */
- i__1 = j - 1;
- i__2 = j - 1;
- work[j] = _starpu_dasum_(&i__1, &b[j * b_dim1 + 1], &c__1) + _starpu_dasum_(&
- i__2, &b[j + 1 + b_dim1], ldb);
- /* L210: */
- }
- if (b[b_dim1 + 1] == 0. && b[b_dim1 + 2] == 0.) {
- b[b_dim1 + 1] = *eps3;
- }
- work[1] = 0.;
- i1 = 1;
- i2 = *n;
- i3 = 1;
- }
- i__1 = *n;
- for (its = 1; its <= i__1; ++its) {
- scale = 1.;
- vmax = 1.;
- vcrit = *bignum;
- /* Solve U*(xr,xi) = scale*(vr,vi) for a right eigenvector, */
- /* or U'*(xr,xi) = scale*(vr,vi) for a left eigenvector, */
- /* overwriting (xr,xi) on (vr,vi). */
- i__2 = i2;
- i__3 = i3;
- for (i__ = i1; i__3 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__3)
- {
- if (work[i__] > vcrit) {
- rec = 1. / vmax;
- _starpu_dscal_(n, &rec, &vr[1], &c__1);
- _starpu_dscal_(n, &rec, &vi[1], &c__1);
- scale *= rec;
- vmax = 1.;
- vcrit = *bignum;
- }
- xr = vr[i__];
- xi = vi[i__];
- if (*rightv) {
- i__4 = *n;
- for (j = i__ + 1; j <= i__4; ++j) {
- xr = xr - b[i__ + j * b_dim1] * vr[j] + b[j + 1 + i__
- * b_dim1] * vi[j];
- xi = xi - b[i__ + j * b_dim1] * vi[j] - b[j + 1 + i__
- * b_dim1] * vr[j];
- /* L220: */
- }
- } else {
- i__4 = i__ - 1;
- for (j = 1; j <= i__4; ++j) {
- xr = xr - b[j + i__ * b_dim1] * vr[j] + b[i__ + 1 + j
- * b_dim1] * vi[j];
- xi = xi - b[j + i__ * b_dim1] * vi[j] - b[i__ + 1 + j
- * b_dim1] * vr[j];
- /* L230: */
- }
- }
- w = (d__1 = b[i__ + i__ * b_dim1], abs(d__1)) + (d__2 = b[i__
- + 1 + i__ * b_dim1], abs(d__2));
- if (w > *smlnum) {
- if (w < 1.) {
- w1 = abs(xr) + abs(xi);
- if (w1 > w * *bignum) {
- rec = 1. / w1;
- _starpu_dscal_(n, &rec, &vr[1], &c__1);
- _starpu_dscal_(n, &rec, &vi[1], &c__1);
- xr = vr[i__];
- xi = vi[i__];
- scale *= rec;
- vmax *= rec;
- }
- }
- /* Divide by diagonal element of B. */
- _starpu_dladiv_(&xr, &xi, &b[i__ + i__ * b_dim1], &b[i__ + 1 +
- i__ * b_dim1], &vr[i__], &vi[i__]);
- /* Computing MAX */
- d__3 = (d__1 = vr[i__], abs(d__1)) + (d__2 = vi[i__], abs(
- d__2));
- vmax = max(d__3,vmax);
- vcrit = *bignum / vmax;
- } else {
- i__4 = *n;
- for (j = 1; j <= i__4; ++j) {
- vr[j] = 0.;
- vi[j] = 0.;
- /* L240: */
- }
- vr[i__] = 1.;
- vi[i__] = 1.;
- scale = 0.;
- vmax = 1.;
- vcrit = *bignum;
- }
- /* L250: */
- }
- /* Test for sufficient growth in the norm of (VR,VI). */
- vnorm = _starpu_dasum_(n, &vr[1], &c__1) + _starpu_dasum_(n, &vi[1], &c__1);
- if (vnorm >= growto * scale) {
- goto L280;
- }
- /* Choose a new orthogonal starting vector and try again. */
- y = *eps3 / (rootn + 1.);
- vr[1] = *eps3;
- vi[1] = 0.;
- i__3 = *n;
- for (i__ = 2; i__ <= i__3; ++i__) {
- vr[i__] = y;
- vi[i__] = 0.;
- /* L260: */
- }
- vr[*n - its + 1] -= *eps3 * rootn;
- /* L270: */
- }
- /* Failure to find eigenvector in N iterations */
- *info = 1;
- L280:
- /* Normalize eigenvector. */
- vnorm = 0.;
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- /* Computing MAX */
- d__3 = vnorm, d__4 = (d__1 = vr[i__], abs(d__1)) + (d__2 = vi[i__]
- , abs(d__2));
- vnorm = max(d__3,d__4);
- /* L290: */
- }
- d__1 = 1. / vnorm;
- _starpu_dscal_(n, &d__1, &vr[1], &c__1);
- d__1 = 1. / vnorm;
- _starpu_dscal_(n, &d__1, &vi[1], &c__1);
- }
- return 0;
- /* End of DLAEIN */
- } /* _starpu_dlaein_ */
|