123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476 |
- /* dlaed8.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static doublereal c_b3 = -1.;
- static integer c__1 = 1;
- /* Subroutine */ int _starpu_dlaed8_(integer *icompq, integer *k, integer *n, integer
- *qsiz, doublereal *d__, doublereal *q, integer *ldq, integer *indxq,
- doublereal *rho, integer *cutpnt, doublereal *z__, doublereal *dlamda,
- doublereal *q2, integer *ldq2, doublereal *w, integer *perm, integer
- *givptr, integer *givcol, doublereal *givnum, integer *indxp, integer
- *indx, integer *info)
- {
- /* System generated locals */
- integer q_dim1, q_offset, q2_dim1, q2_offset, i__1;
- doublereal d__1;
- /* Builtin functions */
- double sqrt(doublereal);
- /* Local variables */
- doublereal c__;
- integer i__, j;
- doublereal s, t;
- integer k2, n1, n2, jp, n1p1;
- doublereal eps, tau, tol;
- integer jlam, imax, jmax;
- extern /* Subroutine */ int _starpu_drot_(integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *), _starpu_dscal_(
- integer *, doublereal *, doublereal *, integer *), _starpu_dcopy_(integer
- *, doublereal *, integer *, doublereal *, integer *);
- extern doublereal _starpu_dlapy2_(doublereal *, doublereal *), _starpu_dlamch_(char *);
- extern integer _starpu_idamax_(integer *, doublereal *, integer *);
- extern /* Subroutine */ int _starpu_dlamrg_(integer *, integer *, doublereal *,
- integer *, integer *, integer *), _starpu_dlacpy_(char *, integer *,
- integer *, doublereal *, integer *, doublereal *, integer *), _starpu_xerbla_(char *, integer *);
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLAED8 merges the two sets of eigenvalues together into a single */
- /* sorted set. Then it tries to deflate the size of the problem. */
- /* There are two ways in which deflation can occur: when two or more */
- /* eigenvalues are close together or if there is a tiny element in the */
- /* Z vector. For each such occurrence the order of the related secular */
- /* equation problem is reduced by one. */
- /* Arguments */
- /* ========= */
- /* ICOMPQ (input) INTEGER */
- /* = 0: Compute eigenvalues only. */
- /* = 1: Compute eigenvectors of original dense symmetric matrix */
- /* also. On entry, Q contains the orthogonal matrix used */
- /* to reduce the original matrix to tridiagonal form. */
- /* K (output) INTEGER */
- /* The number of non-deflated eigenvalues, and the order of the */
- /* related secular equation. */
- /* N (input) INTEGER */
- /* The dimension of the symmetric tridiagonal matrix. N >= 0. */
- /* QSIZ (input) INTEGER */
- /* The dimension of the orthogonal matrix used to reduce */
- /* the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1. */
- /* D (input/output) DOUBLE PRECISION array, dimension (N) */
- /* On entry, the eigenvalues of the two submatrices to be */
- /* combined. On exit, the trailing (N-K) updated eigenvalues */
- /* (those which were deflated) sorted into increasing order. */
- /* Q (input/output) DOUBLE PRECISION array, dimension (LDQ,N) */
- /* If ICOMPQ = 0, Q is not referenced. Otherwise, */
- /* on entry, Q contains the eigenvectors of the partially solved */
- /* system which has been previously updated in matrix */
- /* multiplies with other partially solved eigensystems. */
- /* On exit, Q contains the trailing (N-K) updated eigenvectors */
- /* (those which were deflated) in its last N-K columns. */
- /* LDQ (input) INTEGER */
- /* The leading dimension of the array Q. LDQ >= max(1,N). */
- /* INDXQ (input) INTEGER array, dimension (N) */
- /* The permutation which separately sorts the two sub-problems */
- /* in D into ascending order. Note that elements in the second */
- /* half of this permutation must first have CUTPNT added to */
- /* their values in order to be accurate. */
- /* RHO (input/output) DOUBLE PRECISION */
- /* On entry, the off-diagonal element associated with the rank-1 */
- /* cut which originally split the two submatrices which are now */
- /* being recombined. */
- /* On exit, RHO has been modified to the value required by */
- /* DLAED3. */
- /* CUTPNT (input) INTEGER */
- /* The location of the last eigenvalue in the leading */
- /* sub-matrix. min(1,N) <= CUTPNT <= N. */
- /* Z (input) DOUBLE PRECISION array, dimension (N) */
- /* On entry, Z contains the updating vector (the last row of */
- /* the first sub-eigenvector matrix and the first row of the */
- /* second sub-eigenvector matrix). */
- /* On exit, the contents of Z are destroyed by the updating */
- /* process. */
- /* DLAMDA (output) DOUBLE PRECISION array, dimension (N) */
- /* A copy of the first K eigenvalues which will be used by */
- /* DLAED3 to form the secular equation. */
- /* Q2 (output) DOUBLE PRECISION array, dimension (LDQ2,N) */
- /* If ICOMPQ = 0, Q2 is not referenced. Otherwise, */
- /* a copy of the first K eigenvectors which will be used by */
- /* DLAED7 in a matrix multiply (DGEMM) to update the new */
- /* eigenvectors. */
- /* LDQ2 (input) INTEGER */
- /* The leading dimension of the array Q2. LDQ2 >= max(1,N). */
- /* W (output) DOUBLE PRECISION array, dimension (N) */
- /* The first k values of the final deflation-altered z-vector and */
- /* will be passed to DLAED3. */
- /* PERM (output) INTEGER array, dimension (N) */
- /* The permutations (from deflation and sorting) to be applied */
- /* to each eigenblock. */
- /* GIVPTR (output) INTEGER */
- /* The number of Givens rotations which took place in this */
- /* subproblem. */
- /* GIVCOL (output) INTEGER array, dimension (2, N) */
- /* Each pair of numbers indicates a pair of columns to take place */
- /* in a Givens rotation. */
- /* GIVNUM (output) DOUBLE PRECISION array, dimension (2, N) */
- /* Each number indicates the S value to be used in the */
- /* corresponding Givens rotation. */
- /* INDXP (workspace) INTEGER array, dimension (N) */
- /* The permutation used to place deflated values of D at the end */
- /* of the array. INDXP(1:K) points to the nondeflated D-values */
- /* and INDXP(K+1:N) points to the deflated eigenvalues. */
- /* INDX (workspace) INTEGER array, dimension (N) */
- /* The permutation used to sort the contents of D into ascending */
- /* order. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit. */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* Further Details */
- /* =============== */
- /* Based on contributions by */
- /* Jeff Rutter, Computer Science Division, University of California */
- /* at Berkeley, USA */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- --d__;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1;
- q -= q_offset;
- --indxq;
- --z__;
- --dlamda;
- q2_dim1 = *ldq2;
- q2_offset = 1 + q2_dim1;
- q2 -= q2_offset;
- --w;
- --perm;
- givcol -= 3;
- givnum -= 3;
- --indxp;
- --indx;
- /* Function Body */
- *info = 0;
- if (*icompq < 0 || *icompq > 1) {
- *info = -1;
- } else if (*n < 0) {
- *info = -3;
- } else if (*icompq == 1 && *qsiz < *n) {
- *info = -4;
- } else if (*ldq < max(1,*n)) {
- *info = -7;
- } else if (*cutpnt < min(1,*n) || *cutpnt > *n) {
- *info = -10;
- } else if (*ldq2 < max(1,*n)) {
- *info = -14;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DLAED8", &i__1);
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0) {
- return 0;
- }
- n1 = *cutpnt;
- n2 = *n - n1;
- n1p1 = n1 + 1;
- if (*rho < 0.) {
- _starpu_dscal_(&n2, &c_b3, &z__[n1p1], &c__1);
- }
- /* Normalize z so that norm(z) = 1 */
- t = 1. / sqrt(2.);
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- indx[j] = j;
- /* L10: */
- }
- _starpu_dscal_(n, &t, &z__[1], &c__1);
- *rho = (d__1 = *rho * 2., abs(d__1));
- /* Sort the eigenvalues into increasing order */
- i__1 = *n;
- for (i__ = *cutpnt + 1; i__ <= i__1; ++i__) {
- indxq[i__] += *cutpnt;
- /* L20: */
- }
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- dlamda[i__] = d__[indxq[i__]];
- w[i__] = z__[indxq[i__]];
- /* L30: */
- }
- i__ = 1;
- j = *cutpnt + 1;
- _starpu_dlamrg_(&n1, &n2, &dlamda[1], &c__1, &c__1, &indx[1]);
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- d__[i__] = dlamda[indx[i__]];
- z__[i__] = w[indx[i__]];
- /* L40: */
- }
- /* Calculate the allowable deflation tolerence */
- imax = _starpu_idamax_(n, &z__[1], &c__1);
- jmax = _starpu_idamax_(n, &d__[1], &c__1);
- eps = _starpu_dlamch_("Epsilon");
- tol = eps * 8. * (d__1 = d__[jmax], abs(d__1));
- /* If the rank-1 modifier is small enough, no more needs to be done */
- /* except to reorganize Q so that its columns correspond with the */
- /* elements in D. */
- if (*rho * (d__1 = z__[imax], abs(d__1)) <= tol) {
- *k = 0;
- if (*icompq == 0) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- perm[j] = indxq[indx[j]];
- /* L50: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- perm[j] = indxq[indx[j]];
- _starpu_dcopy_(qsiz, &q[perm[j] * q_dim1 + 1], &c__1, &q2[j * q2_dim1
- + 1], &c__1);
- /* L60: */
- }
- _starpu_dlacpy_("A", qsiz, n, &q2[q2_dim1 + 1], ldq2, &q[q_dim1 + 1], ldq);
- }
- return 0;
- }
- /* If there are multiple eigenvalues then the problem deflates. Here */
- /* the number of equal eigenvalues are found. As each equal */
- /* eigenvalue is found, an elementary reflector is computed to rotate */
- /* the corresponding eigensubspace so that the corresponding */
- /* components of Z are zero in this new basis. */
- *k = 0;
- *givptr = 0;
- k2 = *n + 1;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (*rho * (d__1 = z__[j], abs(d__1)) <= tol) {
- /* Deflate due to small z component. */
- --k2;
- indxp[k2] = j;
- if (j == *n) {
- goto L110;
- }
- } else {
- jlam = j;
- goto L80;
- }
- /* L70: */
- }
- L80:
- ++j;
- if (j > *n) {
- goto L100;
- }
- if (*rho * (d__1 = z__[j], abs(d__1)) <= tol) {
- /* Deflate due to small z component. */
- --k2;
- indxp[k2] = j;
- } else {
- /* Check if eigenvalues are close enough to allow deflation. */
- s = z__[jlam];
- c__ = z__[j];
- /* Find sqrt(a**2+b**2) without overflow or */
- /* destructive underflow. */
- tau = _starpu_dlapy2_(&c__, &s);
- t = d__[j] - d__[jlam];
- c__ /= tau;
- s = -s / tau;
- if ((d__1 = t * c__ * s, abs(d__1)) <= tol) {
- /* Deflation is possible. */
- z__[j] = tau;
- z__[jlam] = 0.;
- /* Record the appropriate Givens rotation */
- ++(*givptr);
- givcol[(*givptr << 1) + 1] = indxq[indx[jlam]];
- givcol[(*givptr << 1) + 2] = indxq[indx[j]];
- givnum[(*givptr << 1) + 1] = c__;
- givnum[(*givptr << 1) + 2] = s;
- if (*icompq == 1) {
- _starpu_drot_(qsiz, &q[indxq[indx[jlam]] * q_dim1 + 1], &c__1, &q[
- indxq[indx[j]] * q_dim1 + 1], &c__1, &c__, &s);
- }
- t = d__[jlam] * c__ * c__ + d__[j] * s * s;
- d__[j] = d__[jlam] * s * s + d__[j] * c__ * c__;
- d__[jlam] = t;
- --k2;
- i__ = 1;
- L90:
- if (k2 + i__ <= *n) {
- if (d__[jlam] < d__[indxp[k2 + i__]]) {
- indxp[k2 + i__ - 1] = indxp[k2 + i__];
- indxp[k2 + i__] = jlam;
- ++i__;
- goto L90;
- } else {
- indxp[k2 + i__ - 1] = jlam;
- }
- } else {
- indxp[k2 + i__ - 1] = jlam;
- }
- jlam = j;
- } else {
- ++(*k);
- w[*k] = z__[jlam];
- dlamda[*k] = d__[jlam];
- indxp[*k] = jlam;
- jlam = j;
- }
- }
- goto L80;
- L100:
- /* Record the last eigenvalue. */
- ++(*k);
- w[*k] = z__[jlam];
- dlamda[*k] = d__[jlam];
- indxp[*k] = jlam;
- L110:
- /* Sort the eigenvalues and corresponding eigenvectors into DLAMDA */
- /* and Q2 respectively. The eigenvalues/vectors which were not */
- /* deflated go into the first K slots of DLAMDA and Q2 respectively, */
- /* while those which were deflated go into the last N - K slots. */
- if (*icompq == 0) {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- jp = indxp[j];
- dlamda[j] = d__[jp];
- perm[j] = indxq[indx[jp]];
- /* L120: */
- }
- } else {
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- jp = indxp[j];
- dlamda[j] = d__[jp];
- perm[j] = indxq[indx[jp]];
- _starpu_dcopy_(qsiz, &q[perm[j] * q_dim1 + 1], &c__1, &q2[j * q2_dim1 + 1]
- , &c__1);
- /* L130: */
- }
- }
- /* The deflated eigenvalues and their corresponding vectors go back */
- /* into the last N - K slots of D and Q respectively. */
- if (*k < *n) {
- if (*icompq == 0) {
- i__1 = *n - *k;
- _starpu_dcopy_(&i__1, &dlamda[*k + 1], &c__1, &d__[*k + 1], &c__1);
- } else {
- i__1 = *n - *k;
- _starpu_dcopy_(&i__1, &dlamda[*k + 1], &c__1, &d__[*k + 1], &c__1);
- i__1 = *n - *k;
- _starpu_dlacpy_("A", qsiz, &i__1, &q2[(*k + 1) * q2_dim1 + 1], ldq2, &q[(*
- k + 1) * q_dim1 + 1], ldq);
- }
- }
- return 0;
- /* End of DLAED8 */
- } /* _starpu_dlaed8_ */
|