123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355 |
- /* dlaed7.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__2 = 2;
- static integer c__1 = 1;
- static doublereal c_b10 = 1.;
- static doublereal c_b11 = 0.;
- static integer c_n1 = -1;
- /* Subroutine */ int _starpu_dlaed7_(integer *icompq, integer *n, integer *qsiz,
- integer *tlvls, integer *curlvl, integer *curpbm, doublereal *d__,
- doublereal *q, integer *ldq, integer *indxq, doublereal *rho, integer
- *cutpnt, doublereal *qstore, integer *qptr, integer *prmptr, integer *
- perm, integer *givptr, integer *givcol, doublereal *givnum,
- doublereal *work, integer *iwork, integer *info)
- {
- /* System generated locals */
- integer q_dim1, q_offset, i__1, i__2;
- /* Builtin functions */
- integer pow_ii(integer *, integer *);
- /* Local variables */
- integer i__, k, n1, n2, is, iw, iz, iq2, ptr, ldq2, indx, curr;
- extern /* Subroutine */ int _starpu_dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *);
- integer indxc, indxp;
- extern /* Subroutine */ int _starpu_dlaed8_(integer *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, integer *, integer *,
- doublereal *, integer *, integer *, integer *), _starpu_dlaed9_(integer *,
- integer *, integer *, integer *, doublereal *, doublereal *,
- integer *, doublereal *, doublereal *, doublereal *, doublereal *,
- integer *, integer *), _starpu_dlaeda_(integer *, integer *, integer *,
- integer *, integer *, integer *, integer *, integer *, doublereal
- *, doublereal *, integer *, doublereal *, doublereal *, integer *)
- ;
- integer idlmda;
- extern /* Subroutine */ int _starpu_dlamrg_(integer *, integer *, doublereal *,
- integer *, integer *, integer *), _starpu_xerbla_(char *, integer *);
- integer coltyp;
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLAED7 computes the updated eigensystem of a diagonal */
- /* matrix after modification by a rank-one symmetric matrix. This */
- /* routine is used only for the eigenproblem which requires all */
- /* eigenvalues and optionally eigenvectors of a dense symmetric matrix */
- /* that has been reduced to tridiagonal form. DLAED1 handles */
- /* the case in which all eigenvalues and eigenvectors of a symmetric */
- /* tridiagonal matrix are desired. */
- /* T = Q(in) ( D(in) + RHO * Z*Z' ) Q'(in) = Q(out) * D(out) * Q'(out) */
- /* where Z = Q'u, u is a vector of length N with ones in the */
- /* CUTPNT and CUTPNT + 1 th elements and zeros elsewhere. */
- /* The eigenvectors of the original matrix are stored in Q, and the */
- /* eigenvalues are in D. The algorithm consists of three stages: */
- /* The first stage consists of deflating the size of the problem */
- /* when there are multiple eigenvalues or if there is a zero in */
- /* the Z vector. For each such occurence the dimension of the */
- /* secular equation problem is reduced by one. This stage is */
- /* performed by the routine DLAED8. */
- /* The second stage consists of calculating the updated */
- /* eigenvalues. This is done by finding the roots of the secular */
- /* equation via the routine DLAED4 (as called by DLAED9). */
- /* This routine also calculates the eigenvectors of the current */
- /* problem. */
- /* The final stage consists of computing the updated eigenvectors */
- /* directly using the updated eigenvalues. The eigenvectors for */
- /* the current problem are multiplied with the eigenvectors from */
- /* the overall problem. */
- /* Arguments */
- /* ========= */
- /* ICOMPQ (input) INTEGER */
- /* = 0: Compute eigenvalues only. */
- /* = 1: Compute eigenvectors of original dense symmetric matrix */
- /* also. On entry, Q contains the orthogonal matrix used */
- /* to reduce the original matrix to tridiagonal form. */
- /* N (input) INTEGER */
- /* The dimension of the symmetric tridiagonal matrix. N >= 0. */
- /* QSIZ (input) INTEGER */
- /* The dimension of the orthogonal matrix used to reduce */
- /* the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1. */
- /* TLVLS (input) INTEGER */
- /* The total number of merging levels in the overall divide and */
- /* conquer tree. */
- /* CURLVL (input) INTEGER */
- /* The current level in the overall merge routine, */
- /* 0 <= CURLVL <= TLVLS. */
- /* CURPBM (input) INTEGER */
- /* The current problem in the current level in the overall */
- /* merge routine (counting from upper left to lower right). */
- /* D (input/output) DOUBLE PRECISION array, dimension (N) */
- /* On entry, the eigenvalues of the rank-1-perturbed matrix. */
- /* On exit, the eigenvalues of the repaired matrix. */
- /* Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N) */
- /* On entry, the eigenvectors of the rank-1-perturbed matrix. */
- /* On exit, the eigenvectors of the repaired tridiagonal matrix. */
- /* LDQ (input) INTEGER */
- /* The leading dimension of the array Q. LDQ >= max(1,N). */
- /* INDXQ (output) INTEGER array, dimension (N) */
- /* The permutation which will reintegrate the subproblem just */
- /* solved back into sorted order, i.e., D( INDXQ( I = 1, N ) ) */
- /* will be in ascending order. */
- /* RHO (input) DOUBLE PRECISION */
- /* The subdiagonal element used to create the rank-1 */
- /* modification. */
- /* CUTPNT (input) INTEGER */
- /* Contains the location of the last eigenvalue in the leading */
- /* sub-matrix. min(1,N) <= CUTPNT <= N. */
- /* QSTORE (input/output) DOUBLE PRECISION array, dimension (N**2+1) */
- /* Stores eigenvectors of submatrices encountered during */
- /* divide and conquer, packed together. QPTR points to */
- /* beginning of the submatrices. */
- /* QPTR (input/output) INTEGER array, dimension (N+2) */
- /* List of indices pointing to beginning of submatrices stored */
- /* in QSTORE. The submatrices are numbered starting at the */
- /* bottom left of the divide and conquer tree, from left to */
- /* right and bottom to top. */
- /* PRMPTR (input) INTEGER array, dimension (N lg N) */
- /* Contains a list of pointers which indicate where in PERM a */
- /* level's permutation is stored. PRMPTR(i+1) - PRMPTR(i) */
- /* indicates the size of the permutation and also the size of */
- /* the full, non-deflated problem. */
- /* PERM (input) INTEGER array, dimension (N lg N) */
- /* Contains the permutations (from deflation and sorting) to be */
- /* applied to each eigenblock. */
- /* GIVPTR (input) INTEGER array, dimension (N lg N) */
- /* Contains a list of pointers which indicate where in GIVCOL a */
- /* level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i) */
- /* indicates the number of Givens rotations. */
- /* GIVCOL (input) INTEGER array, dimension (2, N lg N) */
- /* Each pair of numbers indicates a pair of columns to take place */
- /* in a Givens rotation. */
- /* GIVNUM (input) DOUBLE PRECISION array, dimension (2, N lg N) */
- /* Each number indicates the S value to be used in the */
- /* corresponding Givens rotation. */
- /* WORK (workspace) DOUBLE PRECISION array, dimension (3*N+QSIZ*N) */
- /* IWORK (workspace) INTEGER array, dimension (4*N) */
- /* INFO (output) INTEGER */
- /* = 0: successful exit. */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > 0: if INFO = 1, an eigenvalue did not converge */
- /* Further Details */
- /* =============== */
- /* Based on contributions by */
- /* Jeff Rutter, Computer Science Division, University of California */
- /* at Berkeley, USA */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- --d__;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1;
- q -= q_offset;
- --indxq;
- --qstore;
- --qptr;
- --prmptr;
- --perm;
- --givptr;
- givcol -= 3;
- givnum -= 3;
- --work;
- --iwork;
- /* Function Body */
- *info = 0;
- if (*icompq < 0 || *icompq > 1) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*icompq == 1 && *qsiz < *n) {
- *info = -4;
- } else if (*ldq < max(1,*n)) {
- *info = -9;
- } else if (min(1,*n) > *cutpnt || *n < *cutpnt) {
- *info = -12;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DLAED7", &i__1);
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0) {
- return 0;
- }
- /* The following values are for bookkeeping purposes only. They are */
- /* integer pointers which indicate the portion of the workspace */
- /* used by a particular array in DLAED8 and DLAED9. */
- if (*icompq == 1) {
- ldq2 = *qsiz;
- } else {
- ldq2 = *n;
- }
- iz = 1;
- idlmda = iz + *n;
- iw = idlmda + *n;
- iq2 = iw + *n;
- is = iq2 + *n * ldq2;
- indx = 1;
- indxc = indx + *n;
- coltyp = indxc + *n;
- indxp = coltyp + *n;
- /* Form the z-vector which consists of the last row of Q_1 and the */
- /* first row of Q_2. */
- ptr = pow_ii(&c__2, tlvls) + 1;
- i__1 = *curlvl - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = *tlvls - i__;
- ptr += pow_ii(&c__2, &i__2);
- /* L10: */
- }
- curr = ptr + *curpbm;
- _starpu_dlaeda_(n, tlvls, curlvl, curpbm, &prmptr[1], &perm[1], &givptr[1], &
- givcol[3], &givnum[3], &qstore[1], &qptr[1], &work[iz], &work[iz
- + *n], info);
- /* When solving the final problem, we no longer need the stored data, */
- /* so we will overwrite the data from this level onto the previously */
- /* used storage space. */
- if (*curlvl == *tlvls) {
- qptr[curr] = 1;
- prmptr[curr] = 1;
- givptr[curr] = 1;
- }
- /* Sort and Deflate eigenvalues. */
- _starpu_dlaed8_(icompq, &k, n, qsiz, &d__[1], &q[q_offset], ldq, &indxq[1], rho,
- cutpnt, &work[iz], &work[idlmda], &work[iq2], &ldq2, &work[iw], &
- perm[prmptr[curr]], &givptr[curr + 1], &givcol[(givptr[curr] << 1)
- + 1], &givnum[(givptr[curr] << 1) + 1], &iwork[indxp], &iwork[
- indx], info);
- prmptr[curr + 1] = prmptr[curr] + *n;
- givptr[curr + 1] += givptr[curr];
- /* Solve Secular Equation. */
- if (k != 0) {
- _starpu_dlaed9_(&k, &c__1, &k, n, &d__[1], &work[is], &k, rho, &work[idlmda],
- &work[iw], &qstore[qptr[curr]], &k, info);
- if (*info != 0) {
- goto L30;
- }
- if (*icompq == 1) {
- _starpu_dgemm_("N", "N", qsiz, &k, &k, &c_b10, &work[iq2], &ldq2, &qstore[
- qptr[curr]], &k, &c_b11, &q[q_offset], ldq);
- }
- /* Computing 2nd power */
- i__1 = k;
- qptr[curr + 1] = qptr[curr] + i__1 * i__1;
- /* Prepare the INDXQ sorting permutation. */
- n1 = k;
- n2 = *n - k;
- _starpu_dlamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &indxq[1]);
- } else {
- qptr[curr + 1] = qptr[curr];
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- indxq[i__] = i__;
- /* L20: */
- }
- }
- L30:
- return 0;
- /* End of DLAED7 */
- } /* _starpu_dlaed7_ */
|