123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339 |
- /* dlaed3.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static doublereal c_b22 = 1.;
- static doublereal c_b23 = 0.;
- /* Subroutine */ int _starpu_dlaed3_(integer *k, integer *n, integer *n1, doublereal *
- d__, doublereal *q, integer *ldq, doublereal *rho, doublereal *dlamda,
- doublereal *q2, integer *indx, integer *ctot, doublereal *w,
- doublereal *s, integer *info)
- {
- /* System generated locals */
- integer q_dim1, q_offset, i__1, i__2;
- doublereal d__1;
- /* Builtin functions */
- double sqrt(doublereal), d_sign(doublereal *, doublereal *);
- /* Local variables */
- integer i__, j, n2, n12, ii, n23, iq2;
- doublereal temp;
- extern doublereal _starpu_dnrm2_(integer *, doublereal *, integer *);
- extern /* Subroutine */ int _starpu_dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *),
- _starpu_dcopy_(integer *, doublereal *, integer *, doublereal *, integer
- *), _starpu_dlaed4_(integer *, integer *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, integer *);
- extern doublereal _starpu_dlamc3_(doublereal *, doublereal *);
- extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *),
- _starpu_dlaset_(char *, integer *, integer *, doublereal *, doublereal *,
- doublereal *, integer *), _starpu_xerbla_(char *, integer *);
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLAED3 finds the roots of the secular equation, as defined by the */
- /* values in D, W, and RHO, between 1 and K. It makes the */
- /* appropriate calls to DLAED4 and then updates the eigenvectors by */
- /* multiplying the matrix of eigenvectors of the pair of eigensystems */
- /* being combined by the matrix of eigenvectors of the K-by-K system */
- /* which is solved here. */
- /* This code makes very mild assumptions about floating point */
- /* arithmetic. It will work on machines with a guard digit in */
- /* add/subtract, or on those binary machines without guard digits */
- /* which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. */
- /* It could conceivably fail on hexadecimal or decimal machines */
- /* without guard digits, but we know of none. */
- /* Arguments */
- /* ========= */
- /* K (input) INTEGER */
- /* The number of terms in the rational function to be solved by */
- /* DLAED4. K >= 0. */
- /* N (input) INTEGER */
- /* The number of rows and columns in the Q matrix. */
- /* N >= K (deflation may result in N>K). */
- /* N1 (input) INTEGER */
- /* The location of the last eigenvalue in the leading submatrix. */
- /* min(1,N) <= N1 <= N/2. */
- /* D (output) DOUBLE PRECISION array, dimension (N) */
- /* D(I) contains the updated eigenvalues for */
- /* 1 <= I <= K. */
- /* Q (output) DOUBLE PRECISION array, dimension (LDQ,N) */
- /* Initially the first K columns are used as workspace. */
- /* On output the columns 1 to K contain */
- /* the updated eigenvectors. */
- /* LDQ (input) INTEGER */
- /* The leading dimension of the array Q. LDQ >= max(1,N). */
- /* RHO (input) DOUBLE PRECISION */
- /* The value of the parameter in the rank one update equation. */
- /* RHO >= 0 required. */
- /* DLAMDA (input/output) DOUBLE PRECISION array, dimension (K) */
- /* The first K elements of this array contain the old roots */
- /* of the deflated updating problem. These are the poles */
- /* of the secular equation. May be changed on output by */
- /* having lowest order bit set to zero on Cray X-MP, Cray Y-MP, */
- /* Cray-2, or Cray C-90, as described above. */
- /* Q2 (input) DOUBLE PRECISION array, dimension (LDQ2, N) */
- /* The first K columns of this matrix contain the non-deflated */
- /* eigenvectors for the split problem. */
- /* INDX (input) INTEGER array, dimension (N) */
- /* The permutation used to arrange the columns of the deflated */
- /* Q matrix into three groups (see DLAED2). */
- /* The rows of the eigenvectors found by DLAED4 must be likewise */
- /* permuted before the matrix multiply can take place. */
- /* CTOT (input) INTEGER array, dimension (4) */
- /* A count of the total number of the various types of columns */
- /* in Q, as described in INDX. The fourth column type is any */
- /* column which has been deflated. */
- /* W (input/output) DOUBLE PRECISION array, dimension (K) */
- /* The first K elements of this array contain the components */
- /* of the deflation-adjusted updating vector. Destroyed on */
- /* output. */
- /* S (workspace) DOUBLE PRECISION array, dimension (N1 + 1)*K */
- /* Will contain the eigenvectors of the repaired matrix which */
- /* will be multiplied by the previously accumulated eigenvectors */
- /* to update the system. */
- /* LDS (input) INTEGER */
- /* The leading dimension of S. LDS >= max(1,K). */
- /* INFO (output) INTEGER */
- /* = 0: successful exit. */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > 0: if INFO = 1, an eigenvalue did not converge */
- /* Further Details */
- /* =============== */
- /* Based on contributions by */
- /* Jeff Rutter, Computer Science Division, University of California */
- /* at Berkeley, USA */
- /* Modified by Francoise Tisseur, University of Tennessee. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- --d__;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1;
- q -= q_offset;
- --dlamda;
- --q2;
- --indx;
- --ctot;
- --w;
- --s;
- /* Function Body */
- *info = 0;
- if (*k < 0) {
- *info = -1;
- } else if (*n < *k) {
- *info = -2;
- } else if (*ldq < max(1,*n)) {
- *info = -6;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DLAED3", &i__1);
- return 0;
- }
- /* Quick return if possible */
- if (*k == 0) {
- return 0;
- }
- /* Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can */
- /* be computed with high relative accuracy (barring over/underflow). */
- /* This is a problem on machines without a guard digit in */
- /* add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). */
- /* The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I), */
- /* which on any of these machines zeros out the bottommost */
- /* bit of DLAMDA(I) if it is 1; this makes the subsequent */
- /* subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation */
- /* occurs. On binary machines with a guard digit (almost all */
- /* machines) it does not change DLAMDA(I) at all. On hexadecimal */
- /* and decimal machines with a guard digit, it slightly */
- /* changes the bottommost bits of DLAMDA(I). It does not account */
- /* for hexadecimal or decimal machines without guard digits */
- /* (we know of none). We use a subroutine call to compute */
- /* 2*DLAMBDA(I) to prevent optimizing compilers from eliminating */
- /* this code. */
- i__1 = *k;
- for (i__ = 1; i__ <= i__1; ++i__) {
- dlamda[i__] = _starpu_dlamc3_(&dlamda[i__], &dlamda[i__]) - dlamda[i__];
- /* L10: */
- }
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- _starpu_dlaed4_(k, &j, &dlamda[1], &w[1], &q[j * q_dim1 + 1], rho, &d__[j],
- info);
- /* If the zero finder fails, the computation is terminated. */
- if (*info != 0) {
- goto L120;
- }
- /* L20: */
- }
- if (*k == 1) {
- goto L110;
- }
- if (*k == 2) {
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- w[1] = q[j * q_dim1 + 1];
- w[2] = q[j * q_dim1 + 2];
- ii = indx[1];
- q[j * q_dim1 + 1] = w[ii];
- ii = indx[2];
- q[j * q_dim1 + 2] = w[ii];
- /* L30: */
- }
- goto L110;
- }
- /* Compute updated W. */
- _starpu_dcopy_(k, &w[1], &c__1, &s[1], &c__1);
- /* Initialize W(I) = Q(I,I) */
- i__1 = *ldq + 1;
- _starpu_dcopy_(k, &q[q_offset], &i__1, &w[1], &c__1);
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- w[i__] *= q[i__ + j * q_dim1] / (dlamda[i__] - dlamda[j]);
- /* L40: */
- }
- i__2 = *k;
- for (i__ = j + 1; i__ <= i__2; ++i__) {
- w[i__] *= q[i__ + j * q_dim1] / (dlamda[i__] - dlamda[j]);
- /* L50: */
- }
- /* L60: */
- }
- i__1 = *k;
- for (i__ = 1; i__ <= i__1; ++i__) {
- d__1 = sqrt(-w[i__]);
- w[i__] = d_sign(&d__1, &s[i__]);
- /* L70: */
- }
- /* Compute eigenvectors of the modified rank-1 modification. */
- i__1 = *k;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *k;
- for (i__ = 1; i__ <= i__2; ++i__) {
- s[i__] = w[i__] / q[i__ + j * q_dim1];
- /* L80: */
- }
- temp = _starpu_dnrm2_(k, &s[1], &c__1);
- i__2 = *k;
- for (i__ = 1; i__ <= i__2; ++i__) {
- ii = indx[i__];
- q[i__ + j * q_dim1] = s[ii] / temp;
- /* L90: */
- }
- /* L100: */
- }
- /* Compute the updated eigenvectors. */
- L110:
- n2 = *n - *n1;
- n12 = ctot[1] + ctot[2];
- n23 = ctot[2] + ctot[3];
- _starpu_dlacpy_("A", &n23, k, &q[ctot[1] + 1 + q_dim1], ldq, &s[1], &n23);
- iq2 = *n1 * n12 + 1;
- if (n23 != 0) {
- _starpu_dgemm_("N", "N", &n2, k, &n23, &c_b22, &q2[iq2], &n2, &s[1], &n23, &
- c_b23, &q[*n1 + 1 + q_dim1], ldq);
- } else {
- _starpu_dlaset_("A", &n2, k, &c_b23, &c_b23, &q[*n1 + 1 + q_dim1], ldq);
- }
- _starpu_dlacpy_("A", &n12, k, &q[q_offset], ldq, &s[1], &n12);
- if (n12 != 0) {
- _starpu_dgemm_("N", "N", n1, k, &n12, &c_b22, &q2[1], n1, &s[1], &n12, &c_b23,
- &q[q_offset], ldq);
- } else {
- _starpu_dlaset_("A", n1, k, &c_b23, &c_b23, &q[q_dim1 + 1], ldq);
- }
- L120:
- return 0;
- /* End of DLAED3 */
- } /* _starpu_dlaed3_ */
|