123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441 |
- /* dlaed0.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__9 = 9;
- static integer c__0 = 0;
- static integer c__2 = 2;
- static doublereal c_b23 = 1.;
- static doublereal c_b24 = 0.;
- static integer c__1 = 1;
- /* Subroutine */ int _starpu_dlaed0_(integer *icompq, integer *qsiz, integer *n,
- doublereal *d__, doublereal *e, doublereal *q, integer *ldq,
- doublereal *qstore, integer *ldqs, doublereal *work, integer *iwork,
- integer *info)
- {
- /* System generated locals */
- integer q_dim1, q_offset, qstore_dim1, qstore_offset, i__1, i__2;
- doublereal d__1;
- /* Builtin functions */
- double log(doublereal);
- integer pow_ii(integer *, integer *);
- /* Local variables */
- integer i__, j, k, iq, lgn, msd2, smm1, spm1, spm2;
- doublereal temp;
- integer curr;
- extern /* Subroutine */ int _starpu_dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *);
- integer iperm;
- extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- integer indxq, iwrem;
- extern /* Subroutine */ int _starpu_dlaed1_(integer *, doublereal *, doublereal *,
- integer *, integer *, doublereal *, integer *, doublereal *,
- integer *, integer *);
- integer iqptr;
- extern /* Subroutine */ int _starpu_dlaed7_(integer *, integer *, integer *,
- integer *, integer *, integer *, doublereal *, doublereal *,
- integer *, integer *, doublereal *, integer *, doublereal *,
- integer *, integer *, integer *, integer *, integer *, doublereal
- *, doublereal *, integer *, integer *);
- integer tlvls;
- extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *);
- integer igivcl;
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *);
- integer igivnm, submat, curprb, subpbs, igivpt;
- extern /* Subroutine */ int _starpu_dsteqr_(char *, integer *, doublereal *,
- doublereal *, doublereal *, integer *, doublereal *, integer *);
- integer curlvl, matsiz, iprmpt, smlsiz;
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLAED0 computes all eigenvalues and corresponding eigenvectors of a */
- /* symmetric tridiagonal matrix using the divide and conquer method. */
- /* Arguments */
- /* ========= */
- /* ICOMPQ (input) INTEGER */
- /* = 0: Compute eigenvalues only. */
- /* = 1: Compute eigenvectors of original dense symmetric matrix */
- /* also. On entry, Q contains the orthogonal matrix used */
- /* to reduce the original matrix to tridiagonal form. */
- /* = 2: Compute eigenvalues and eigenvectors of tridiagonal */
- /* matrix. */
- /* QSIZ (input) INTEGER */
- /* The dimension of the orthogonal matrix used to reduce */
- /* the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1. */
- /* N (input) INTEGER */
- /* The dimension of the symmetric tridiagonal matrix. N >= 0. */
- /* D (input/output) DOUBLE PRECISION array, dimension (N) */
- /* On entry, the main diagonal of the tridiagonal matrix. */
- /* On exit, its eigenvalues. */
- /* E (input) DOUBLE PRECISION array, dimension (N-1) */
- /* The off-diagonal elements of the tridiagonal matrix. */
- /* On exit, E has been destroyed. */
- /* Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N) */
- /* On entry, Q must contain an N-by-N orthogonal matrix. */
- /* If ICOMPQ = 0 Q is not referenced. */
- /* If ICOMPQ = 1 On entry, Q is a subset of the columns of the */
- /* orthogonal matrix used to reduce the full */
- /* matrix to tridiagonal form corresponding to */
- /* the subset of the full matrix which is being */
- /* decomposed at this time. */
- /* If ICOMPQ = 2 On entry, Q will be the identity matrix. */
- /* On exit, Q contains the eigenvectors of the */
- /* tridiagonal matrix. */
- /* LDQ (input) INTEGER */
- /* The leading dimension of the array Q. If eigenvectors are */
- /* desired, then LDQ >= max(1,N). In any case, LDQ >= 1. */
- /* QSTORE (workspace) DOUBLE PRECISION array, dimension (LDQS, N) */
- /* Referenced only when ICOMPQ = 1. Used to store parts of */
- /* the eigenvector matrix when the updating matrix multiplies */
- /* take place. */
- /* LDQS (input) INTEGER */
- /* The leading dimension of the array QSTORE. If ICOMPQ = 1, */
- /* then LDQS >= max(1,N). In any case, LDQS >= 1. */
- /* WORK (workspace) DOUBLE PRECISION array, */
- /* If ICOMPQ = 0 or 1, the dimension of WORK must be at least */
- /* 1 + 3*N + 2*N*lg N + 2*N**2 */
- /* ( lg( N ) = smallest integer k */
- /* such that 2^k >= N ) */
- /* If ICOMPQ = 2, the dimension of WORK must be at least */
- /* 4*N + N**2. */
- /* IWORK (workspace) INTEGER array, */
- /* If ICOMPQ = 0 or 1, the dimension of IWORK must be at least */
- /* 6 + 6*N + 5*N*lg N. */
- /* ( lg( N ) = smallest integer k */
- /* such that 2^k >= N ) */
- /* If ICOMPQ = 2, the dimension of IWORK must be at least */
- /* 3 + 5*N. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit. */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > 0: The algorithm failed to compute an eigenvalue while */
- /* working on the submatrix lying in rows and columns */
- /* INFO/(N+1) through mod(INFO,N+1). */
- /* Further Details */
- /* =============== */
- /* Based on contributions by */
- /* Jeff Rutter, Computer Science Division, University of California */
- /* at Berkeley, USA */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- --d__;
- --e;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1;
- q -= q_offset;
- qstore_dim1 = *ldqs;
- qstore_offset = 1 + qstore_dim1;
- qstore -= qstore_offset;
- --work;
- --iwork;
- /* Function Body */
- *info = 0;
- if (*icompq < 0 || *icompq > 2) {
- *info = -1;
- } else if (*icompq == 1 && *qsiz < max(0,*n)) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*ldq < max(1,*n)) {
- *info = -7;
- } else if (*ldqs < max(1,*n)) {
- *info = -9;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DLAED0", &i__1);
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0) {
- return 0;
- }
- smlsiz = _starpu_ilaenv_(&c__9, "DLAED0", " ", &c__0, &c__0, &c__0, &c__0);
- /* Determine the size and placement of the submatrices, and save in */
- /* the leading elements of IWORK. */
- iwork[1] = *n;
- subpbs = 1;
- tlvls = 0;
- L10:
- if (iwork[subpbs] > smlsiz) {
- for (j = subpbs; j >= 1; --j) {
- iwork[j * 2] = (iwork[j] + 1) / 2;
- iwork[(j << 1) - 1] = iwork[j] / 2;
- /* L20: */
- }
- ++tlvls;
- subpbs <<= 1;
- goto L10;
- }
- i__1 = subpbs;
- for (j = 2; j <= i__1; ++j) {
- iwork[j] += iwork[j - 1];
- /* L30: */
- }
- /* Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1 */
- /* using rank-1 modifications (cuts). */
- spm1 = subpbs - 1;
- i__1 = spm1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- submat = iwork[i__] + 1;
- smm1 = submat - 1;
- d__[smm1] -= (d__1 = e[smm1], abs(d__1));
- d__[submat] -= (d__1 = e[smm1], abs(d__1));
- /* L40: */
- }
- indxq = (*n << 2) + 3;
- if (*icompq != 2) {
- /* Set up workspaces for eigenvalues only/accumulate new vectors */
- /* routine */
- temp = log((doublereal) (*n)) / log(2.);
- lgn = (integer) temp;
- if (pow_ii(&c__2, &lgn) < *n) {
- ++lgn;
- }
- if (pow_ii(&c__2, &lgn) < *n) {
- ++lgn;
- }
- iprmpt = indxq + *n + 1;
- iperm = iprmpt + *n * lgn;
- iqptr = iperm + *n * lgn;
- igivpt = iqptr + *n + 2;
- igivcl = igivpt + *n * lgn;
- igivnm = 1;
- iq = igivnm + (*n << 1) * lgn;
- /* Computing 2nd power */
- i__1 = *n;
- iwrem = iq + i__1 * i__1 + 1;
- /* Initialize pointers */
- i__1 = subpbs;
- for (i__ = 0; i__ <= i__1; ++i__) {
- iwork[iprmpt + i__] = 1;
- iwork[igivpt + i__] = 1;
- /* L50: */
- }
- iwork[iqptr] = 1;
- }
- /* Solve each submatrix eigenproblem at the bottom of the divide and */
- /* conquer tree. */
- curr = 0;
- i__1 = spm1;
- for (i__ = 0; i__ <= i__1; ++i__) {
- if (i__ == 0) {
- submat = 1;
- matsiz = iwork[1];
- } else {
- submat = iwork[i__] + 1;
- matsiz = iwork[i__ + 1] - iwork[i__];
- }
- if (*icompq == 2) {
- _starpu_dsteqr_("I", &matsiz, &d__[submat], &e[submat], &q[submat +
- submat * q_dim1], ldq, &work[1], info);
- if (*info != 0) {
- goto L130;
- }
- } else {
- _starpu_dsteqr_("I", &matsiz, &d__[submat], &e[submat], &work[iq - 1 +
- iwork[iqptr + curr]], &matsiz, &work[1], info);
- if (*info != 0) {
- goto L130;
- }
- if (*icompq == 1) {
- _starpu_dgemm_("N", "N", qsiz, &matsiz, &matsiz, &c_b23, &q[submat *
- q_dim1 + 1], ldq, &work[iq - 1 + iwork[iqptr + curr]],
- &matsiz, &c_b24, &qstore[submat * qstore_dim1 + 1],
- ldqs);
- }
- /* Computing 2nd power */
- i__2 = matsiz;
- iwork[iqptr + curr + 1] = iwork[iqptr + curr] + i__2 * i__2;
- ++curr;
- }
- k = 1;
- i__2 = iwork[i__ + 1];
- for (j = submat; j <= i__2; ++j) {
- iwork[indxq + j] = k;
- ++k;
- /* L60: */
- }
- /* L70: */
- }
- /* Successively merge eigensystems of adjacent submatrices */
- /* into eigensystem for the corresponding larger matrix. */
- /* while ( SUBPBS > 1 ) */
- curlvl = 1;
- L80:
- if (subpbs > 1) {
- spm2 = subpbs - 2;
- i__1 = spm2;
- for (i__ = 0; i__ <= i__1; i__ += 2) {
- if (i__ == 0) {
- submat = 1;
- matsiz = iwork[2];
- msd2 = iwork[1];
- curprb = 0;
- } else {
- submat = iwork[i__] + 1;
- matsiz = iwork[i__ + 2] - iwork[i__];
- msd2 = matsiz / 2;
- ++curprb;
- }
- /* Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2) */
- /* into an eigensystem of size MATSIZ. */
- /* DLAED1 is used only for the full eigensystem of a tridiagonal */
- /* matrix. */
- /* DLAED7 handles the cases in which eigenvalues only or eigenvalues */
- /* and eigenvectors of a full symmetric matrix (which was reduced to */
- /* tridiagonal form) are desired. */
- if (*icompq == 2) {
- _starpu_dlaed1_(&matsiz, &d__[submat], &q[submat + submat * q_dim1],
- ldq, &iwork[indxq + submat], &e[submat + msd2 - 1], &
- msd2, &work[1], &iwork[subpbs + 1], info);
- } else {
- _starpu_dlaed7_(icompq, &matsiz, qsiz, &tlvls, &curlvl, &curprb, &d__[
- submat], &qstore[submat * qstore_dim1 + 1], ldqs, &
- iwork[indxq + submat], &e[submat + msd2 - 1], &msd2, &
- work[iq], &iwork[iqptr], &iwork[iprmpt], &iwork[iperm]
- , &iwork[igivpt], &iwork[igivcl], &work[igivnm], &
- work[iwrem], &iwork[subpbs + 1], info);
- }
- if (*info != 0) {
- goto L130;
- }
- iwork[i__ / 2 + 1] = iwork[i__ + 2];
- /* L90: */
- }
- subpbs /= 2;
- ++curlvl;
- goto L80;
- }
- /* end while */
- /* Re-merge the eigenvalues/vectors which were deflated at the final */
- /* merge step. */
- if (*icompq == 1) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- j = iwork[indxq + i__];
- work[i__] = d__[j];
- _starpu_dcopy_(qsiz, &qstore[j * qstore_dim1 + 1], &c__1, &q[i__ * q_dim1
- + 1], &c__1);
- /* L100: */
- }
- _starpu_dcopy_(n, &work[1], &c__1, &d__[1], &c__1);
- } else if (*icompq == 2) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- j = iwork[indxq + i__];
- work[i__] = d__[j];
- _starpu_dcopy_(n, &q[j * q_dim1 + 1], &c__1, &work[*n * i__ + 1], &c__1);
- /* L110: */
- }
- _starpu_dcopy_(n, &work[1], &c__1, &d__[1], &c__1);
- _starpu_dlacpy_("A", n, n, &work[*n + 1], n, &q[q_offset], ldq);
- } else {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- j = iwork[indxq + i__];
- work[i__] = d__[j];
- /* L120: */
- }
- _starpu_dcopy_(n, &work[1], &c__1, &d__[1], &c__1);
- }
- goto L140;
- L130:
- *info = submat * (*n + 1) + submat + matsiz - 1;
- L140:
- return 0;
- /* End of DLAED0 */
- } /* _starpu_dlaed0_ */
|