123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641 |
- /* dlaebz.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Subroutine */ int _starpu_dlaebz_(integer *ijob, integer *nitmax, integer *n,
- integer *mmax, integer *minp, integer *nbmin, doublereal *abstol,
- doublereal *reltol, doublereal *pivmin, doublereal *d__, doublereal *
- e, doublereal *e2, integer *nval, doublereal *ab, doublereal *c__,
- integer *mout, integer *nab, doublereal *work, integer *iwork,
- integer *info)
- {
- /* System generated locals */
- integer nab_dim1, nab_offset, ab_dim1, ab_offset, i__1, i__2, i__3, i__4,
- i__5, i__6;
- doublereal d__1, d__2, d__3, d__4;
- /* Local variables */
- integer j, kf, ji, kl, jp, jit;
- doublereal tmp1, tmp2;
- integer itmp1, itmp2, kfnew, klnew;
- /* -- LAPACK auxiliary routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLAEBZ contains the iteration loops which compute and use the */
- /* function N(w), which is the count of eigenvalues of a symmetric */
- /* tridiagonal matrix T less than or equal to its argument w. It */
- /* performs a choice of two types of loops: */
- /* IJOB=1, followed by */
- /* IJOB=2: It takes as input a list of intervals and returns a list of */
- /* sufficiently small intervals whose union contains the same */
- /* eigenvalues as the union of the original intervals. */
- /* The input intervals are (AB(j,1),AB(j,2)], j=1,...,MINP. */
- /* The output interval (AB(j,1),AB(j,2)] will contain */
- /* eigenvalues NAB(j,1)+1,...,NAB(j,2), where 1 <= j <= MOUT. */
- /* IJOB=3: It performs a binary search in each input interval */
- /* (AB(j,1),AB(j,2)] for a point w(j) such that */
- /* N(w(j))=NVAL(j), and uses C(j) as the starting point of */
- /* the search. If such a w(j) is found, then on output */
- /* AB(j,1)=AB(j,2)=w. If no such w(j) is found, then on output */
- /* (AB(j,1),AB(j,2)] will be a small interval containing the */
- /* point where N(w) jumps through NVAL(j), unless that point */
- /* lies outside the initial interval. */
- /* Note that the intervals are in all cases half-open intervals, */
- /* i.e., of the form (a,b] , which includes b but not a . */
- /* To avoid underflow, the matrix should be scaled so that its largest */
- /* element is no greater than overflow**(1/2) * underflow**(1/4) */
- /* in absolute value. To assure the most accurate computation */
- /* of small eigenvalues, the matrix should be scaled to be */
- /* not much smaller than that, either. */
- /* See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal */
- /* Matrix", Report CS41, Computer Science Dept., Stanford */
- /* University, July 21, 1966 */
- /* Note: the arguments are, in general, *not* checked for unreasonable */
- /* values. */
- /* Arguments */
- /* ========= */
- /* IJOB (input) INTEGER */
- /* Specifies what is to be done: */
- /* = 1: Compute NAB for the initial intervals. */
- /* = 2: Perform bisection iteration to find eigenvalues of T. */
- /* = 3: Perform bisection iteration to invert N(w), i.e., */
- /* to find a point which has a specified number of */
- /* eigenvalues of T to its left. */
- /* Other values will cause DLAEBZ to return with INFO=-1. */
- /* NITMAX (input) INTEGER */
- /* The maximum number of "levels" of bisection to be */
- /* performed, i.e., an interval of width W will not be made */
- /* smaller than 2^(-NITMAX) * W. If not all intervals */
- /* have converged after NITMAX iterations, then INFO is set */
- /* to the number of non-converged intervals. */
- /* N (input) INTEGER */
- /* The dimension n of the tridiagonal matrix T. It must be at */
- /* least 1. */
- /* MMAX (input) INTEGER */
- /* The maximum number of intervals. If more than MMAX intervals */
- /* are generated, then DLAEBZ will quit with INFO=MMAX+1. */
- /* MINP (input) INTEGER */
- /* The initial number of intervals. It may not be greater than */
- /* MMAX. */
- /* NBMIN (input) INTEGER */
- /* The smallest number of intervals that should be processed */
- /* using a vector loop. If zero, then only the scalar loop */
- /* will be used. */
- /* ABSTOL (input) DOUBLE PRECISION */
- /* The minimum (absolute) width of an interval. When an */
- /* interval is narrower than ABSTOL, or than RELTOL times the */
- /* larger (in magnitude) endpoint, then it is considered to be */
- /* sufficiently small, i.e., converged. This must be at least */
- /* zero. */
- /* RELTOL (input) DOUBLE PRECISION */
- /* The minimum relative width of an interval. When an interval */
- /* is narrower than ABSTOL, or than RELTOL times the larger (in */
- /* magnitude) endpoint, then it is considered to be */
- /* sufficiently small, i.e., converged. Note: this should */
- /* always be at least radix*machine epsilon. */
- /* PIVMIN (input) DOUBLE PRECISION */
- /* The minimum absolute value of a "pivot" in the Sturm */
- /* sequence loop. This *must* be at least max |e(j)**2| * */
- /* safe_min and at least safe_min, where safe_min is at least */
- /* the smallest number that can divide one without overflow. */
- /* D (input) DOUBLE PRECISION array, dimension (N) */
- /* The diagonal elements of the tridiagonal matrix T. */
- /* E (input) DOUBLE PRECISION array, dimension (N) */
- /* The offdiagonal elements of the tridiagonal matrix T in */
- /* positions 1 through N-1. E(N) is arbitrary. */
- /* E2 (input) DOUBLE PRECISION array, dimension (N) */
- /* The squares of the offdiagonal elements of the tridiagonal */
- /* matrix T. E2(N) is ignored. */
- /* NVAL (input/output) INTEGER array, dimension (MINP) */
- /* If IJOB=1 or 2, not referenced. */
- /* If IJOB=3, the desired values of N(w). The elements of NVAL */
- /* will be reordered to correspond with the intervals in AB. */
- /* Thus, NVAL(j) on output will not, in general be the same as */
- /* NVAL(j) on input, but it will correspond with the interval */
- /* (AB(j,1),AB(j,2)] on output. */
- /* AB (input/output) DOUBLE PRECISION array, dimension (MMAX,2) */
- /* The endpoints of the intervals. AB(j,1) is a(j), the left */
- /* endpoint of the j-th interval, and AB(j,2) is b(j), the */
- /* right endpoint of the j-th interval. The input intervals */
- /* will, in general, be modified, split, and reordered by the */
- /* calculation. */
- /* C (input/output) DOUBLE PRECISION array, dimension (MMAX) */
- /* If IJOB=1, ignored. */
- /* If IJOB=2, workspace. */
- /* If IJOB=3, then on input C(j) should be initialized to the */
- /* first search point in the binary search. */
- /* MOUT (output) INTEGER */
- /* If IJOB=1, the number of eigenvalues in the intervals. */
- /* If IJOB=2 or 3, the number of intervals output. */
- /* If IJOB=3, MOUT will equal MINP. */
- /* NAB (input/output) INTEGER array, dimension (MMAX,2) */
- /* If IJOB=1, then on output NAB(i,j) will be set to N(AB(i,j)). */
- /* If IJOB=2, then on input, NAB(i,j) should be set. It must */
- /* satisfy the condition: */
- /* N(AB(i,1)) <= NAB(i,1) <= NAB(i,2) <= N(AB(i,2)), */
- /* which means that in interval i only eigenvalues */
- /* NAB(i,1)+1,...,NAB(i,2) will be considered. Usually, */
- /* NAB(i,j)=N(AB(i,j)), from a previous call to DLAEBZ with */
- /* IJOB=1. */
- /* On output, NAB(i,j) will contain */
- /* max(na(k),min(nb(k),N(AB(i,j)))), where k is the index of */
- /* the input interval that the output interval */
- /* (AB(j,1),AB(j,2)] came from, and na(k) and nb(k) are the */
- /* the input values of NAB(k,1) and NAB(k,2). */
- /* If IJOB=3, then on output, NAB(i,j) contains N(AB(i,j)), */
- /* unless N(w) > NVAL(i) for all search points w , in which */
- /* case NAB(i,1) will not be modified, i.e., the output */
- /* value will be the same as the input value (modulo */
- /* reorderings -- see NVAL and AB), or unless N(w) < NVAL(i) */
- /* for all search points w , in which case NAB(i,2) will */
- /* not be modified. Normally, NAB should be set to some */
- /* distinctive value(s) before DLAEBZ is called. */
- /* WORK (workspace) DOUBLE PRECISION array, dimension (MMAX) */
- /* Workspace. */
- /* IWORK (workspace) INTEGER array, dimension (MMAX) */
- /* Workspace. */
- /* INFO (output) INTEGER */
- /* = 0: All intervals converged. */
- /* = 1--MMAX: The last INFO intervals did not converge. */
- /* = MMAX+1: More than MMAX intervals were generated. */
- /* Further Details */
- /* =============== */
- /* This routine is intended to be called only by other LAPACK */
- /* routines, thus the interface is less user-friendly. It is intended */
- /* for two purposes: */
- /* (a) finding eigenvalues. In this case, DLAEBZ should have one or */
- /* more initial intervals set up in AB, and DLAEBZ should be called */
- /* with IJOB=1. This sets up NAB, and also counts the eigenvalues. */
- /* Intervals with no eigenvalues would usually be thrown out at */
- /* this point. Also, if not all the eigenvalues in an interval i */
- /* are desired, NAB(i,1) can be increased or NAB(i,2) decreased. */
- /* For example, set NAB(i,1)=NAB(i,2)-1 to get the largest */
- /* eigenvalue. DLAEBZ is then called with IJOB=2 and MMAX */
- /* no smaller than the value of MOUT returned by the call with */
- /* IJOB=1. After this (IJOB=2) call, eigenvalues NAB(i,1)+1 */
- /* through NAB(i,2) are approximately AB(i,1) (or AB(i,2)) to the */
- /* tolerance specified by ABSTOL and RELTOL. */
- /* (b) finding an interval (a',b'] containing eigenvalues w(f),...,w(l). */
- /* In this case, start with a Gershgorin interval (a,b). Set up */
- /* AB to contain 2 search intervals, both initially (a,b). One */
- /* NVAL element should contain f-1 and the other should contain l */
- /* , while C should contain a and b, resp. NAB(i,1) should be -1 */
- /* and NAB(i,2) should be N+1, to flag an error if the desired */
- /* interval does not lie in (a,b). DLAEBZ is then called with */
- /* IJOB=3. On exit, if w(f-1) < w(f), then one of the intervals -- */
- /* j -- will have AB(j,1)=AB(j,2) and NAB(j,1)=NAB(j,2)=f-1, while */
- /* if, to the specified tolerance, w(f-k)=...=w(f+r), k > 0 and r */
- /* >= 0, then the interval will have N(AB(j,1))=NAB(j,1)=f-k and */
- /* N(AB(j,2))=NAB(j,2)=f+r. The cases w(l) < w(l+1) and */
- /* w(l-r)=...=w(l+k) are handled similarly. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Check for Errors */
- /* Parameter adjustments */
- nab_dim1 = *mmax;
- nab_offset = 1 + nab_dim1;
- nab -= nab_offset;
- ab_dim1 = *mmax;
- ab_offset = 1 + ab_dim1;
- ab -= ab_offset;
- --d__;
- --e;
- --e2;
- --nval;
- --c__;
- --work;
- --iwork;
- /* Function Body */
- *info = 0;
- if (*ijob < 1 || *ijob > 3) {
- *info = -1;
- return 0;
- }
- /* Initialize NAB */
- if (*ijob == 1) {
- /* Compute the number of eigenvalues in the initial intervals. */
- *mout = 0;
- /* DIR$ NOVECTOR */
- i__1 = *minp;
- for (ji = 1; ji <= i__1; ++ji) {
- for (jp = 1; jp <= 2; ++jp) {
- tmp1 = d__[1] - ab[ji + jp * ab_dim1];
- if (abs(tmp1) < *pivmin) {
- tmp1 = -(*pivmin);
- }
- nab[ji + jp * nab_dim1] = 0;
- if (tmp1 <= 0.) {
- nab[ji + jp * nab_dim1] = 1;
- }
- i__2 = *n;
- for (j = 2; j <= i__2; ++j) {
- tmp1 = d__[j] - e2[j - 1] / tmp1 - ab[ji + jp * ab_dim1];
- if (abs(tmp1) < *pivmin) {
- tmp1 = -(*pivmin);
- }
- if (tmp1 <= 0.) {
- ++nab[ji + jp * nab_dim1];
- }
- /* L10: */
- }
- /* L20: */
- }
- *mout = *mout + nab[ji + (nab_dim1 << 1)] - nab[ji + nab_dim1];
- /* L30: */
- }
- return 0;
- }
- /* Initialize for loop */
- /* KF and KL have the following meaning: */
- /* Intervals 1,...,KF-1 have converged. */
- /* Intervals KF,...,KL still need to be refined. */
- kf = 1;
- kl = *minp;
- /* If IJOB=2, initialize C. */
- /* If IJOB=3, use the user-supplied starting point. */
- if (*ijob == 2) {
- i__1 = *minp;
- for (ji = 1; ji <= i__1; ++ji) {
- c__[ji] = (ab[ji + ab_dim1] + ab[ji + (ab_dim1 << 1)]) * .5;
- /* L40: */
- }
- }
- /* Iteration loop */
- i__1 = *nitmax;
- for (jit = 1; jit <= i__1; ++jit) {
- /* Loop over intervals */
- if (kl - kf + 1 >= *nbmin && *nbmin > 0) {
- /* Begin of Parallel Version of the loop */
- i__2 = kl;
- for (ji = kf; ji <= i__2; ++ji) {
- /* Compute N(c), the number of eigenvalues less than c */
- work[ji] = d__[1] - c__[ji];
- iwork[ji] = 0;
- if (work[ji] <= *pivmin) {
- iwork[ji] = 1;
- /* Computing MIN */
- d__1 = work[ji], d__2 = -(*pivmin);
- work[ji] = min(d__1,d__2);
- }
- i__3 = *n;
- for (j = 2; j <= i__3; ++j) {
- work[ji] = d__[j] - e2[j - 1] / work[ji] - c__[ji];
- if (work[ji] <= *pivmin) {
- ++iwork[ji];
- /* Computing MIN */
- d__1 = work[ji], d__2 = -(*pivmin);
- work[ji] = min(d__1,d__2);
- }
- /* L50: */
- }
- /* L60: */
- }
- if (*ijob <= 2) {
- /* IJOB=2: Choose all intervals containing eigenvalues. */
- klnew = kl;
- i__2 = kl;
- for (ji = kf; ji <= i__2; ++ji) {
- /* Insure that N(w) is monotone */
- /* Computing MIN */
- /* Computing MAX */
- i__5 = nab[ji + nab_dim1], i__6 = iwork[ji];
- i__3 = nab[ji + (nab_dim1 << 1)], i__4 = max(i__5,i__6);
- iwork[ji] = min(i__3,i__4);
- /* Update the Queue -- add intervals if both halves */
- /* contain eigenvalues. */
- if (iwork[ji] == nab[ji + (nab_dim1 << 1)]) {
- /* No eigenvalue in the upper interval: */
- /* just use the lower interval. */
- ab[ji + (ab_dim1 << 1)] = c__[ji];
- } else if (iwork[ji] == nab[ji + nab_dim1]) {
- /* No eigenvalue in the lower interval: */
- /* just use the upper interval. */
- ab[ji + ab_dim1] = c__[ji];
- } else {
- ++klnew;
- if (klnew <= *mmax) {
- /* Eigenvalue in both intervals -- add upper to */
- /* queue. */
- ab[klnew + (ab_dim1 << 1)] = ab[ji + (ab_dim1 <<
- 1)];
- nab[klnew + (nab_dim1 << 1)] = nab[ji + (nab_dim1
- << 1)];
- ab[klnew + ab_dim1] = c__[ji];
- nab[klnew + nab_dim1] = iwork[ji];
- ab[ji + (ab_dim1 << 1)] = c__[ji];
- nab[ji + (nab_dim1 << 1)] = iwork[ji];
- } else {
- *info = *mmax + 1;
- }
- }
- /* L70: */
- }
- if (*info != 0) {
- return 0;
- }
- kl = klnew;
- } else {
- /* IJOB=3: Binary search. Keep only the interval containing */
- /* w s.t. N(w) = NVAL */
- i__2 = kl;
- for (ji = kf; ji <= i__2; ++ji) {
- if (iwork[ji] <= nval[ji]) {
- ab[ji + ab_dim1] = c__[ji];
- nab[ji + nab_dim1] = iwork[ji];
- }
- if (iwork[ji] >= nval[ji]) {
- ab[ji + (ab_dim1 << 1)] = c__[ji];
- nab[ji + (nab_dim1 << 1)] = iwork[ji];
- }
- /* L80: */
- }
- }
- } else {
- /* End of Parallel Version of the loop */
- /* Begin of Serial Version of the loop */
- klnew = kl;
- i__2 = kl;
- for (ji = kf; ji <= i__2; ++ji) {
- /* Compute N(w), the number of eigenvalues less than w */
- tmp1 = c__[ji];
- tmp2 = d__[1] - tmp1;
- itmp1 = 0;
- if (tmp2 <= *pivmin) {
- itmp1 = 1;
- /* Computing MIN */
- d__1 = tmp2, d__2 = -(*pivmin);
- tmp2 = min(d__1,d__2);
- }
- /* A series of compiler directives to defeat vectorization */
- /* for the next loop */
- /* $PL$ CMCHAR=' ' */
- /* DIR$ NEXTSCALAR */
- /* $DIR SCALAR */
- /* DIR$ NEXT SCALAR */
- /* VD$L NOVECTOR */
- /* DEC$ NOVECTOR */
- /* VD$ NOVECTOR */
- /* VDIR NOVECTOR */
- /* VOCL LOOP,SCALAR */
- /* IBM PREFER SCALAR */
- /* $PL$ CMCHAR='*' */
- i__3 = *n;
- for (j = 2; j <= i__3; ++j) {
- tmp2 = d__[j] - e2[j - 1] / tmp2 - tmp1;
- if (tmp2 <= *pivmin) {
- ++itmp1;
- /* Computing MIN */
- d__1 = tmp2, d__2 = -(*pivmin);
- tmp2 = min(d__1,d__2);
- }
- /* L90: */
- }
- if (*ijob <= 2) {
- /* IJOB=2: Choose all intervals containing eigenvalues. */
- /* Insure that N(w) is monotone */
- /* Computing MIN */
- /* Computing MAX */
- i__5 = nab[ji + nab_dim1];
- i__3 = nab[ji + (nab_dim1 << 1)], i__4 = max(i__5,itmp1);
- itmp1 = min(i__3,i__4);
- /* Update the Queue -- add intervals if both halves */
- /* contain eigenvalues. */
- if (itmp1 == nab[ji + (nab_dim1 << 1)]) {
- /* No eigenvalue in the upper interval: */
- /* just use the lower interval. */
- ab[ji + (ab_dim1 << 1)] = tmp1;
- } else if (itmp1 == nab[ji + nab_dim1]) {
- /* No eigenvalue in the lower interval: */
- /* just use the upper interval. */
- ab[ji + ab_dim1] = tmp1;
- } else if (klnew < *mmax) {
- /* Eigenvalue in both intervals -- add upper to queue. */
- ++klnew;
- ab[klnew + (ab_dim1 << 1)] = ab[ji + (ab_dim1 << 1)];
- nab[klnew + (nab_dim1 << 1)] = nab[ji + (nab_dim1 <<
- 1)];
- ab[klnew + ab_dim1] = tmp1;
- nab[klnew + nab_dim1] = itmp1;
- ab[ji + (ab_dim1 << 1)] = tmp1;
- nab[ji + (nab_dim1 << 1)] = itmp1;
- } else {
- *info = *mmax + 1;
- return 0;
- }
- } else {
- /* IJOB=3: Binary search. Keep only the interval */
- /* containing w s.t. N(w) = NVAL */
- if (itmp1 <= nval[ji]) {
- ab[ji + ab_dim1] = tmp1;
- nab[ji + nab_dim1] = itmp1;
- }
- if (itmp1 >= nval[ji]) {
- ab[ji + (ab_dim1 << 1)] = tmp1;
- nab[ji + (nab_dim1 << 1)] = itmp1;
- }
- }
- /* L100: */
- }
- kl = klnew;
- /* End of Serial Version of the loop */
- }
- /* Check for convergence */
- kfnew = kf;
- i__2 = kl;
- for (ji = kf; ji <= i__2; ++ji) {
- tmp1 = (d__1 = ab[ji + (ab_dim1 << 1)] - ab[ji + ab_dim1], abs(
- d__1));
- /* Computing MAX */
- d__3 = (d__1 = ab[ji + (ab_dim1 << 1)], abs(d__1)), d__4 = (d__2 =
- ab[ji + ab_dim1], abs(d__2));
- tmp2 = max(d__3,d__4);
- /* Computing MAX */
- d__1 = max(*abstol,*pivmin), d__2 = *reltol * tmp2;
- if (tmp1 < max(d__1,d__2) || nab[ji + nab_dim1] >= nab[ji + (
- nab_dim1 << 1)]) {
- /* Converged -- Swap with position KFNEW, */
- /* then increment KFNEW */
- if (ji > kfnew) {
- tmp1 = ab[ji + ab_dim1];
- tmp2 = ab[ji + (ab_dim1 << 1)];
- itmp1 = nab[ji + nab_dim1];
- itmp2 = nab[ji + (nab_dim1 << 1)];
- ab[ji + ab_dim1] = ab[kfnew + ab_dim1];
- ab[ji + (ab_dim1 << 1)] = ab[kfnew + (ab_dim1 << 1)];
- nab[ji + nab_dim1] = nab[kfnew + nab_dim1];
- nab[ji + (nab_dim1 << 1)] = nab[kfnew + (nab_dim1 << 1)];
- ab[kfnew + ab_dim1] = tmp1;
- ab[kfnew + (ab_dim1 << 1)] = tmp2;
- nab[kfnew + nab_dim1] = itmp1;
- nab[kfnew + (nab_dim1 << 1)] = itmp2;
- if (*ijob == 3) {
- itmp1 = nval[ji];
- nval[ji] = nval[kfnew];
- nval[kfnew] = itmp1;
- }
- }
- ++kfnew;
- }
- /* L110: */
- }
- kf = kfnew;
- /* Choose Midpoints */
- i__2 = kl;
- for (ji = kf; ji <= i__2; ++ji) {
- c__[ji] = (ab[ji + ab_dim1] + ab[ji + (ab_dim1 << 1)]) * .5;
- /* L120: */
- }
- /* If no more intervals to refine, quit. */
- if (kf > kl) {
- goto L140;
- }
- /* L130: */
- }
- /* Converged */
- L140:
- /* Computing MAX */
- i__1 = kl + 1 - kf;
- *info = max(i__1,0);
- *mout = kl;
- return 0;
- /* End of DLAEBZ */
- } /* _starpu_dlaebz_ */
|