123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435 |
- /* dlabrd.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static doublereal c_b4 = -1.;
- static doublereal c_b5 = 1.;
- static integer c__1 = 1;
- static doublereal c_b16 = 0.;
- /* Subroutine */ int _starpu_dlabrd_(integer *m, integer *n, integer *nb, doublereal *
- a, integer *lda, doublereal *d__, doublereal *e, doublereal *tauq,
- doublereal *taup, doublereal *x, integer *ldx, doublereal *y, integer
- *ldy)
- {
- /* System generated locals */
- integer a_dim1, a_offset, x_dim1, x_offset, y_dim1, y_offset, i__1, i__2,
- i__3;
- /* Local variables */
- integer i__;
- extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *,
- integer *), _starpu_dgemv_(char *, integer *, integer *, doublereal *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- doublereal *, integer *), _starpu_dlarfg_(integer *, doublereal *,
- doublereal *, integer *, doublereal *);
- /* -- LAPACK auxiliary routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLABRD reduces the first NB rows and columns of a real general */
- /* m by n matrix A to upper or lower bidiagonal form by an orthogonal */
- /* transformation Q' * A * P, and returns the matrices X and Y which */
- /* are needed to apply the transformation to the unreduced part of A. */
- /* If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower */
- /* bidiagonal form. */
- /* This is an auxiliary routine called by DGEBRD */
- /* Arguments */
- /* ========= */
- /* M (input) INTEGER */
- /* The number of rows in the matrix A. */
- /* N (input) INTEGER */
- /* The number of columns in the matrix A. */
- /* NB (input) INTEGER */
- /* The number of leading rows and columns of A to be reduced. */
- /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
- /* On entry, the m by n general matrix to be reduced. */
- /* On exit, the first NB rows and columns of the matrix are */
- /* overwritten; the rest of the array is unchanged. */
- /* If m >= n, elements on and below the diagonal in the first NB */
- /* columns, with the array TAUQ, represent the orthogonal */
- /* matrix Q as a product of elementary reflectors; and */
- /* elements above the diagonal in the first NB rows, with the */
- /* array TAUP, represent the orthogonal matrix P as a product */
- /* of elementary reflectors. */
- /* If m < n, elements below the diagonal in the first NB */
- /* columns, with the array TAUQ, represent the orthogonal */
- /* matrix Q as a product of elementary reflectors, and */
- /* elements on and above the diagonal in the first NB rows, */
- /* with the array TAUP, represent the orthogonal matrix P as */
- /* a product of elementary reflectors. */
- /* See Further Details. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,M). */
- /* D (output) DOUBLE PRECISION array, dimension (NB) */
- /* The diagonal elements of the first NB rows and columns of */
- /* the reduced matrix. D(i) = A(i,i). */
- /* E (output) DOUBLE PRECISION array, dimension (NB) */
- /* The off-diagonal elements of the first NB rows and columns of */
- /* the reduced matrix. */
- /* TAUQ (output) DOUBLE PRECISION array dimension (NB) */
- /* The scalar factors of the elementary reflectors which */
- /* represent the orthogonal matrix Q. See Further Details. */
- /* TAUP (output) DOUBLE PRECISION array, dimension (NB) */
- /* The scalar factors of the elementary reflectors which */
- /* represent the orthogonal matrix P. See Further Details. */
- /* X (output) DOUBLE PRECISION array, dimension (LDX,NB) */
- /* The m-by-nb matrix X required to update the unreduced part */
- /* of A. */
- /* LDX (input) INTEGER */
- /* The leading dimension of the array X. LDX >= M. */
- /* Y (output) DOUBLE PRECISION array, dimension (LDY,NB) */
- /* The n-by-nb matrix Y required to update the unreduced part */
- /* of A. */
- /* LDY (input) INTEGER */
- /* The leading dimension of the array Y. LDY >= N. */
- /* Further Details */
- /* =============== */
- /* The matrices Q and P are represented as products of elementary */
- /* reflectors: */
- /* Q = H(1) H(2) . . . H(nb) and P = G(1) G(2) . . . G(nb) */
- /* Each H(i) and G(i) has the form: */
- /* H(i) = I - tauq * v * v' and G(i) = I - taup * u * u' */
- /* where tauq and taup are real scalars, and v and u are real vectors. */
- /* If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in */
- /* A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in */
- /* A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). */
- /* If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in */
- /* A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in */
- /* A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). */
- /* The elements of the vectors v and u together form the m-by-nb matrix */
- /* V and the nb-by-n matrix U' which are needed, with X and Y, to apply */
- /* the transformation to the unreduced part of the matrix, using a block */
- /* update of the form: A := A - V*Y' - X*U'. */
- /* The contents of A on exit are illustrated by the following examples */
- /* with nb = 2: */
- /* m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): */
- /* ( 1 1 u1 u1 u1 ) ( 1 u1 u1 u1 u1 u1 ) */
- /* ( v1 1 1 u2 u2 ) ( 1 1 u2 u2 u2 u2 ) */
- /* ( v1 v2 a a a ) ( v1 1 a a a a ) */
- /* ( v1 v2 a a a ) ( v1 v2 a a a a ) */
- /* ( v1 v2 a a a ) ( v1 v2 a a a a ) */
- /* ( v1 v2 a a a ) */
- /* where a denotes an element of the original matrix which is unchanged, */
- /* vi denotes an element of the vector defining H(i), and ui an element */
- /* of the vector defining G(i). */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Quick return if possible */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- --d__;
- --e;
- --tauq;
- --taup;
- x_dim1 = *ldx;
- x_offset = 1 + x_dim1;
- x -= x_offset;
- y_dim1 = *ldy;
- y_offset = 1 + y_dim1;
- y -= y_offset;
- /* Function Body */
- if (*m <= 0 || *n <= 0) {
- return 0;
- }
- if (*m >= *n) {
- /* Reduce to upper bidiagonal form */
- i__1 = *nb;
- for (i__ = 1; i__ <= i__1; ++i__) {
- /* Update A(i:m,i) */
- i__2 = *m - i__ + 1;
- i__3 = i__ - 1;
- _starpu_dgemv_("No transpose", &i__2, &i__3, &c_b4, &a[i__ + a_dim1], lda,
- &y[i__ + y_dim1], ldy, &c_b5, &a[i__ + i__ * a_dim1], &
- c__1);
- i__2 = *m - i__ + 1;
- i__3 = i__ - 1;
- _starpu_dgemv_("No transpose", &i__2, &i__3, &c_b4, &x[i__ + x_dim1], ldx,
- &a[i__ * a_dim1 + 1], &c__1, &c_b5, &a[i__ + i__ *
- a_dim1], &c__1);
- /* Generate reflection Q(i) to annihilate A(i+1:m,i) */
- i__2 = *m - i__ + 1;
- /* Computing MIN */
- i__3 = i__ + 1;
- _starpu_dlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[min(i__3, *m)+ i__ *
- a_dim1], &c__1, &tauq[i__]);
- d__[i__] = a[i__ + i__ * a_dim1];
- if (i__ < *n) {
- a[i__ + i__ * a_dim1] = 1.;
- /* Compute Y(i+1:n,i) */
- i__2 = *m - i__ + 1;
- i__3 = *n - i__;
- _starpu_dgemv_("Transpose", &i__2, &i__3, &c_b5, &a[i__ + (i__ + 1) *
- a_dim1], lda, &a[i__ + i__ * a_dim1], &c__1, &c_b16, &
- y[i__ + 1 + i__ * y_dim1], &c__1);
- i__2 = *m - i__ + 1;
- i__3 = i__ - 1;
- _starpu_dgemv_("Transpose", &i__2, &i__3, &c_b5, &a[i__ + a_dim1],
- lda, &a[i__ + i__ * a_dim1], &c__1, &c_b16, &y[i__ *
- y_dim1 + 1], &c__1);
- i__2 = *n - i__;
- i__3 = i__ - 1;
- _starpu_dgemv_("No transpose", &i__2, &i__3, &c_b4, &y[i__ + 1 +
- y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b5, &y[
- i__ + 1 + i__ * y_dim1], &c__1);
- i__2 = *m - i__ + 1;
- i__3 = i__ - 1;
- _starpu_dgemv_("Transpose", &i__2, &i__3, &c_b5, &x[i__ + x_dim1],
- ldx, &a[i__ + i__ * a_dim1], &c__1, &c_b16, &y[i__ *
- y_dim1 + 1], &c__1);
- i__2 = i__ - 1;
- i__3 = *n - i__;
- _starpu_dgemv_("Transpose", &i__2, &i__3, &c_b4, &a[(i__ + 1) *
- a_dim1 + 1], lda, &y[i__ * y_dim1 + 1], &c__1, &c_b5,
- &y[i__ + 1 + i__ * y_dim1], &c__1);
- i__2 = *n - i__;
- _starpu_dscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1);
- /* Update A(i,i+1:n) */
- i__2 = *n - i__;
- _starpu_dgemv_("No transpose", &i__2, &i__, &c_b4, &y[i__ + 1 +
- y_dim1], ldy, &a[i__ + a_dim1], lda, &c_b5, &a[i__ + (
- i__ + 1) * a_dim1], lda);
- i__2 = i__ - 1;
- i__3 = *n - i__;
- _starpu_dgemv_("Transpose", &i__2, &i__3, &c_b4, &a[(i__ + 1) *
- a_dim1 + 1], lda, &x[i__ + x_dim1], ldx, &c_b5, &a[
- i__ + (i__ + 1) * a_dim1], lda);
- /* Generate reflection P(i) to annihilate A(i,i+2:n) */
- i__2 = *n - i__;
- /* Computing MIN */
- i__3 = i__ + 2;
- _starpu_dlarfg_(&i__2, &a[i__ + (i__ + 1) * a_dim1], &a[i__ + min(
- i__3, *n)* a_dim1], lda, &taup[i__]);
- e[i__] = a[i__ + (i__ + 1) * a_dim1];
- a[i__ + (i__ + 1) * a_dim1] = 1.;
- /* Compute X(i+1:m,i) */
- i__2 = *m - i__;
- i__3 = *n - i__;
- _starpu_dgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + (i__
- + 1) * a_dim1], lda, &a[i__ + (i__ + 1) * a_dim1],
- lda, &c_b16, &x[i__ + 1 + i__ * x_dim1], &c__1);
- i__2 = *n - i__;
- _starpu_dgemv_("Transpose", &i__2, &i__, &c_b5, &y[i__ + 1 + y_dim1],
- ldy, &a[i__ + (i__ + 1) * a_dim1], lda, &c_b16, &x[
- i__ * x_dim1 + 1], &c__1);
- i__2 = *m - i__;
- _starpu_dgemv_("No transpose", &i__2, &i__, &c_b4, &a[i__ + 1 +
- a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[
- i__ + 1 + i__ * x_dim1], &c__1);
- i__2 = i__ - 1;
- i__3 = *n - i__;
- _starpu_dgemv_("No transpose", &i__2, &i__3, &c_b5, &a[(i__ + 1) *
- a_dim1 + 1], lda, &a[i__ + (i__ + 1) * a_dim1], lda, &
- c_b16, &x[i__ * x_dim1 + 1], &c__1);
- i__2 = *m - i__;
- i__3 = i__ - 1;
- _starpu_dgemv_("No transpose", &i__2, &i__3, &c_b4, &x[i__ + 1 +
- x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[
- i__ + 1 + i__ * x_dim1], &c__1);
- i__2 = *m - i__;
- _starpu_dscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1);
- }
- /* L10: */
- }
- } else {
- /* Reduce to lower bidiagonal form */
- i__1 = *nb;
- for (i__ = 1; i__ <= i__1; ++i__) {
- /* Update A(i,i:n) */
- i__2 = *n - i__ + 1;
- i__3 = i__ - 1;
- _starpu_dgemv_("No transpose", &i__2, &i__3, &c_b4, &y[i__ + y_dim1], ldy,
- &a[i__ + a_dim1], lda, &c_b5, &a[i__ + i__ * a_dim1],
- lda);
- i__2 = i__ - 1;
- i__3 = *n - i__ + 1;
- _starpu_dgemv_("Transpose", &i__2, &i__3, &c_b4, &a[i__ * a_dim1 + 1],
- lda, &x[i__ + x_dim1], ldx, &c_b5, &a[i__ + i__ * a_dim1],
- lda);
- /* Generate reflection P(i) to annihilate A(i,i+1:n) */
- i__2 = *n - i__ + 1;
- /* Computing MIN */
- i__3 = i__ + 1;
- _starpu_dlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[i__ + min(i__3, *n)*
- a_dim1], lda, &taup[i__]);
- d__[i__] = a[i__ + i__ * a_dim1];
- if (i__ < *m) {
- a[i__ + i__ * a_dim1] = 1.;
- /* Compute X(i+1:m,i) */
- i__2 = *m - i__;
- i__3 = *n - i__ + 1;
- _starpu_dgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + i__ *
- a_dim1], lda, &a[i__ + i__ * a_dim1], lda, &c_b16, &
- x[i__ + 1 + i__ * x_dim1], &c__1);
- i__2 = *n - i__ + 1;
- i__3 = i__ - 1;
- _starpu_dgemv_("Transpose", &i__2, &i__3, &c_b5, &y[i__ + y_dim1],
- ldy, &a[i__ + i__ * a_dim1], lda, &c_b16, &x[i__ *
- x_dim1 + 1], &c__1);
- i__2 = *m - i__;
- i__3 = i__ - 1;
- _starpu_dgemv_("No transpose", &i__2, &i__3, &c_b4, &a[i__ + 1 +
- a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[
- i__ + 1 + i__ * x_dim1], &c__1);
- i__2 = i__ - 1;
- i__3 = *n - i__ + 1;
- _starpu_dgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ * a_dim1 +
- 1], lda, &a[i__ + i__ * a_dim1], lda, &c_b16, &x[i__ *
- x_dim1 + 1], &c__1);
- i__2 = *m - i__;
- i__3 = i__ - 1;
- _starpu_dgemv_("No transpose", &i__2, &i__3, &c_b4, &x[i__ + 1 +
- x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[
- i__ + 1 + i__ * x_dim1], &c__1);
- i__2 = *m - i__;
- _starpu_dscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1);
- /* Update A(i+1:m,i) */
- i__2 = *m - i__;
- i__3 = i__ - 1;
- _starpu_dgemv_("No transpose", &i__2, &i__3, &c_b4, &a[i__ + 1 +
- a_dim1], lda, &y[i__ + y_dim1], ldy, &c_b5, &a[i__ +
- 1 + i__ * a_dim1], &c__1);
- i__2 = *m - i__;
- _starpu_dgemv_("No transpose", &i__2, &i__, &c_b4, &x[i__ + 1 +
- x_dim1], ldx, &a[i__ * a_dim1 + 1], &c__1, &c_b5, &a[
- i__ + 1 + i__ * a_dim1], &c__1);
- /* Generate reflection Q(i) to annihilate A(i+2:m,i) */
- i__2 = *m - i__;
- /* Computing MIN */
- i__3 = i__ + 2;
- _starpu_dlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3, *m)+
- i__ * a_dim1], &c__1, &tauq[i__]);
- e[i__] = a[i__ + 1 + i__ * a_dim1];
- a[i__ + 1 + i__ * a_dim1] = 1.;
- /* Compute Y(i+1:n,i) */
- i__2 = *m - i__;
- i__3 = *n - i__;
- _starpu_dgemv_("Transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + (i__ +
- 1) * a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1,
- &c_b16, &y[i__ + 1 + i__ * y_dim1], &c__1);
- i__2 = *m - i__;
- i__3 = i__ - 1;
- _starpu_dgemv_("Transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + a_dim1],
- lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &y[
- i__ * y_dim1 + 1], &c__1);
- i__2 = *n - i__;
- i__3 = i__ - 1;
- _starpu_dgemv_("No transpose", &i__2, &i__3, &c_b4, &y[i__ + 1 +
- y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b5, &y[
- i__ + 1 + i__ * y_dim1], &c__1);
- i__2 = *m - i__;
- _starpu_dgemv_("Transpose", &i__2, &i__, &c_b5, &x[i__ + 1 + x_dim1],
- ldx, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &y[
- i__ * y_dim1 + 1], &c__1);
- i__2 = *n - i__;
- _starpu_dgemv_("Transpose", &i__, &i__2, &c_b4, &a[(i__ + 1) * a_dim1
- + 1], lda, &y[i__ * y_dim1 + 1], &c__1, &c_b5, &y[i__
- + 1 + i__ * y_dim1], &c__1);
- i__2 = *n - i__;
- _starpu_dscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1);
- }
- /* L20: */
- }
- }
- return 0;
- /* End of DLABRD */
- } /* _starpu_dlabrd_ */
|