123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323 |
- /* _starpu_dla_syrcond.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- doublereal _starpu_dla_syrcond__(char *uplo, integer *n, doublereal *a, integer *lda,
- doublereal *af, integer *ldaf, integer *ipiv, integer *cmode,
- doublereal *c__, integer *info, doublereal *work, integer *iwork,
- ftnlen uplo_len)
- {
- /* System generated locals */
- integer a_dim1, a_offset, af_dim1, af_offset, i__1, i__2;
- doublereal ret_val, d__1;
- /* Local variables */
- integer i__, j;
- logical up;
- doublereal tmp;
- integer kase;
- extern logical _starpu_lsame_(char *, char *);
- integer isave[3];
- extern /* Subroutine */ int _starpu_dlacn2_(integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, integer *);
- extern doublereal _starpu_dlamch_(char *);
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- doublereal ainvnm;
- char normin[1];
- doublereal smlnum;
- extern /* Subroutine */ int _starpu_dsytrs_(char *, integer *, integer *,
- doublereal *, integer *, integer *, doublereal *, integer *,
- integer *);
- /* -- LAPACK routine (version 3.2.1) -- */
- /* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
- /* -- Jason Riedy of Univ. of California Berkeley. -- */
- /* -- April 2009 -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley and NAG Ltd. -- */
- /* .. */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLA_SYRCOND estimates the Skeel condition number of op(A) * op2(C) */
- /* where op2 is determined by CMODE as follows */
- /* CMODE = 1 op2(C) = C */
- /* CMODE = 0 op2(C) = I */
- /* CMODE = -1 op2(C) = inv(C) */
- /* The Skeel condition number cond(A) = norminf( |inv(A)||A| ) */
- /* is computed by computing scaling factors R such that */
- /* diag(R)*A*op2(C) is row equilibrated and computing the standard */
- /* infinity-norm condition number. */
- /* Arguments */
- /* ========== */
- /* UPLO (input) CHARACTER*1 */
- /* = 'U': Upper triangle of A is stored; */
- /* = 'L': Lower triangle of A is stored. */
- /* N (input) INTEGER */
- /* The number of linear equations, i.e., the order of the */
- /* matrix A. N >= 0. */
- /* A (input) DOUBLE PRECISION array, dimension (LDA,N) */
- /* On entry, the N-by-N matrix A. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,N). */
- /* AF (input) DOUBLE PRECISION array, dimension (LDAF,N) */
- /* The block diagonal matrix D and the multipliers used to */
- /* obtain the factor U or L as computed by DSYTRF. */
- /* LDAF (input) INTEGER */
- /* The leading dimension of the array AF. LDAF >= max(1,N). */
- /* IPIV (input) INTEGER array, dimension (N) */
- /* Details of the interchanges and the block structure of D */
- /* as determined by DSYTRF. */
- /* CMODE (input) INTEGER */
- /* Determines op2(C) in the formula op(A) * op2(C) as follows: */
- /* CMODE = 1 op2(C) = C */
- /* CMODE = 0 op2(C) = I */
- /* CMODE = -1 op2(C) = inv(C) */
- /* C (input) DOUBLE PRECISION array, dimension (N) */
- /* The vector C in the formula op(A) * op2(C). */
- /* INFO (output) INTEGER */
- /* = 0: Successful exit. */
- /* i > 0: The ith argument is invalid. */
- /* WORK (input) DOUBLE PRECISION array, dimension (3*N). */
- /* Workspace. */
- /* IWORK (input) INTEGER array, dimension (N). */
- /* Workspace. */
- /* ===================================================================== */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Local Arrays .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- af_dim1 = *ldaf;
- af_offset = 1 + af_dim1;
- af -= af_offset;
- --ipiv;
- --c__;
- --work;
- --iwork;
- /* Function Body */
- ret_val = 0.;
- *info = 0;
- if (*n < 0) {
- *info = -2;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DLA_SYRCOND", &i__1);
- return ret_val;
- }
- if (*n == 0) {
- ret_val = 1.;
- return ret_val;
- }
- up = FALSE_;
- if (_starpu_lsame_(uplo, "U")) {
- up = TRUE_;
- }
- /* Compute the equilibration matrix R such that */
- /* inv(R)*A*C has unit 1-norm. */
- if (up) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- tmp = 0.;
- if (*cmode == 1) {
- i__2 = i__;
- for (j = 1; j <= i__2; ++j) {
- tmp += (d__1 = a[j + i__ * a_dim1] * c__[j], abs(d__1));
- }
- i__2 = *n;
- for (j = i__ + 1; j <= i__2; ++j) {
- tmp += (d__1 = a[i__ + j * a_dim1] * c__[j], abs(d__1));
- }
- } else if (*cmode == 0) {
- i__2 = i__;
- for (j = 1; j <= i__2; ++j) {
- tmp += (d__1 = a[j + i__ * a_dim1], abs(d__1));
- }
- i__2 = *n;
- for (j = i__ + 1; j <= i__2; ++j) {
- tmp += (d__1 = a[i__ + j * a_dim1], abs(d__1));
- }
- } else {
- i__2 = i__;
- for (j = 1; j <= i__2; ++j) {
- tmp += (d__1 = a[j + i__ * a_dim1] / c__[j], abs(d__1));
- }
- i__2 = *n;
- for (j = i__ + 1; j <= i__2; ++j) {
- tmp += (d__1 = a[i__ + j * a_dim1] / c__[j], abs(d__1));
- }
- }
- work[(*n << 1) + i__] = tmp;
- }
- } else {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- tmp = 0.;
- if (*cmode == 1) {
- i__2 = i__;
- for (j = 1; j <= i__2; ++j) {
- tmp += (d__1 = a[i__ + j * a_dim1] * c__[j], abs(d__1));
- }
- i__2 = *n;
- for (j = i__ + 1; j <= i__2; ++j) {
- tmp += (d__1 = a[j + i__ * a_dim1] * c__[j], abs(d__1));
- }
- } else if (*cmode == 0) {
- i__2 = i__;
- for (j = 1; j <= i__2; ++j) {
- tmp += (d__1 = a[i__ + j * a_dim1], abs(d__1));
- }
- i__2 = *n;
- for (j = i__ + 1; j <= i__2; ++j) {
- tmp += (d__1 = a[j + i__ * a_dim1], abs(d__1));
- }
- } else {
- i__2 = i__;
- for (j = 1; j <= i__2; ++j) {
- tmp += (d__1 = a[i__ + j * a_dim1] / c__[j], abs(d__1));
- }
- i__2 = *n;
- for (j = i__ + 1; j <= i__2; ++j) {
- tmp += (d__1 = a[j + i__ * a_dim1] / c__[j], abs(d__1));
- }
- }
- work[(*n << 1) + i__] = tmp;
- }
- }
- /* Estimate the norm of inv(op(A)). */
- smlnum = _starpu_dlamch_("Safe minimum");
- ainvnm = 0.;
- *(unsigned char *)normin = 'N';
- kase = 0;
- L10:
- _starpu_dlacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave);
- if (kase != 0) {
- if (kase == 2) {
- /* Multiply by R. */
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- work[i__] *= work[(*n << 1) + i__];
- }
- if (up) {
- _starpu_dsytrs_("U", n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[
- 1], n, info);
- } else {
- _starpu_dsytrs_("L", n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[
- 1], n, info);
- }
- /* Multiply by inv(C). */
- if (*cmode == 1) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- work[i__] /= c__[i__];
- }
- } else if (*cmode == -1) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- work[i__] *= c__[i__];
- }
- }
- } else {
- /* Multiply by inv(C'). */
- if (*cmode == 1) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- work[i__] /= c__[i__];
- }
- } else if (*cmode == -1) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- work[i__] *= c__[i__];
- }
- }
- if (up) {
- _starpu_dsytrs_("U", n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[
- 1], n, info);
- } else {
- _starpu_dsytrs_("L", n, &c__1, &af[af_offset], ldaf, &ipiv[1], &work[
- 1], n, info);
- }
- /* Multiply by R. */
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- work[i__] *= work[(*n << 1) + i__];
- }
- }
- goto L10;
- }
- /* Compute the estimate of the reciprocal condition number. */
- if (ainvnm != 0.) {
- ret_val = 1. / ainvnm;
- }
- return ret_val;
- } /* _starpu_dla_syrcond__ */
|