123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198 |
- /* _starpu_dla_porpvgrw.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- doublereal _starpu_dla_porpvgrw__(char *uplo, integer *ncols, doublereal *a, integer *
- lda, doublereal *af, integer *ldaf, doublereal *work, ftnlen uplo_len)
- {
- /* System generated locals */
- integer a_dim1, a_offset, af_dim1, af_offset, i__1, i__2;
- doublereal ret_val, d__1, d__2, d__3;
- /* Local variables */
- integer i__, j;
- doublereal amax, umax;
- extern logical _starpu_lsame_(char *, char *);
- logical upper;
- doublereal rpvgrw;
- /* -- LAPACK routine (version 3.2.1) -- */
- /* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
- /* -- Jason Riedy of Univ. of California Berkeley. -- */
- /* -- April 2009 -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley and NAG Ltd. -- */
- /* .. */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DLA_PORPVGRW computes the reciprocal pivot growth factor */
- /* norm(A)/norm(U). The "max absolute element" norm is used. If this is */
- /* much less than 1, the stability of the LU factorization of the */
- /* (equilibrated) matrix A could be poor. This also means that the */
- /* solution X, estimated condition numbers, and error bounds could be */
- /* unreliable. */
- /* Arguments */
- /* ========= */
- /* UPLO (input) CHARACTER*1 */
- /* = 'U': Upper triangle of A is stored; */
- /* = 'L': Lower triangle of A is stored. */
- /* NCOLS (input) INTEGER */
- /* The number of columns of the matrix A. NCOLS >= 0. */
- /* A (input) DOUBLE PRECISION array, dimension (LDA,N) */
- /* On entry, the N-by-N matrix A. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,N). */
- /* AF (input) DOUBLE PRECISION array, dimension (LDAF,N) */
- /* The triangular factor U or L from the Cholesky factorization */
- /* A = U**T*U or A = L*L**T, as computed by DPOTRF. */
- /* LDAF (input) INTEGER */
- /* The leading dimension of the array AF. LDAF >= max(1,N). */
- /* WORK (input) DOUBLE PRECISION array, dimension (2*N) */
- /* ===================================================================== */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- af_dim1 = *ldaf;
- af_offset = 1 + af_dim1;
- af -= af_offset;
- --work;
- /* Function Body */
- upper = _starpu_lsame_("Upper", uplo);
- /* DPOTRF will have factored only the NCOLSxNCOLS leading minor, so */
- /* we restrict the growth search to that minor and use only the first */
- /* 2*NCOLS workspace entries. */
- rpvgrw = 1.;
- i__1 = *ncols << 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- work[i__] = 0.;
- }
- /* Find the max magnitude entry of each column. */
- if (upper) {
- i__1 = *ncols;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
- /* Computing MAX */
- d__2 = (d__1 = a[i__ + j * a_dim1], abs(d__1)), d__3 = work[*
- ncols + j];
- work[*ncols + j] = max(d__2,d__3);
- }
- }
- } else {
- i__1 = *ncols;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *ncols;
- for (i__ = j; i__ <= i__2; ++i__) {
- /* Computing MAX */
- d__2 = (d__1 = a[i__ + j * a_dim1], abs(d__1)), d__3 = work[*
- ncols + j];
- work[*ncols + j] = max(d__2,d__3);
- }
- }
- }
- /* Now find the max magnitude entry of each column of the factor in */
- /* AF. No pivoting, so no permutations. */
- if (_starpu_lsame_("Upper", uplo)) {
- i__1 = *ncols;
- for (j = 1; j <= i__1; ++j) {
- i__2 = j;
- for (i__ = 1; i__ <= i__2; ++i__) {
- /* Computing MAX */
- d__2 = (d__1 = af[i__ + j * af_dim1], abs(d__1)), d__3 = work[
- j];
- work[j] = max(d__2,d__3);
- }
- }
- } else {
- i__1 = *ncols;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *ncols;
- for (i__ = j; i__ <= i__2; ++i__) {
- /* Computing MAX */
- d__2 = (d__1 = af[i__ + j * af_dim1], abs(d__1)), d__3 = work[
- j];
- work[j] = max(d__2,d__3);
- }
- }
- }
- /* Compute the *inverse* of the max element growth factor. Dividing */
- /* by zero would imply the largest entry of the factor's column is */
- /* zero. Than can happen when either the column of A is zero or */
- /* massive pivots made the factor underflow to zero. Neither counts */
- /* as growth in itself, so simply ignore terms with zero */
- /* denominators. */
- if (_starpu_lsame_("Upper", uplo)) {
- i__1 = *ncols;
- for (i__ = 1; i__ <= i__1; ++i__) {
- umax = work[i__];
- amax = work[*ncols + i__];
- if (umax != 0.) {
- /* Computing MIN */
- d__1 = amax / umax;
- rpvgrw = min(d__1,rpvgrw);
- }
- }
- } else {
- i__1 = *ncols;
- for (i__ = 1; i__ <= i__1; ++i__) {
- umax = work[i__];
- amax = work[*ncols + i__];
- if (umax != 0.) {
- /* Computing MIN */
- d__1 = amax / umax;
- rpvgrw = min(d__1,rpvgrw);
- }
- }
- }
- ret_val = rpvgrw;
- return ret_val;
- } /* _starpu_dla_porpvgrw__ */
|