123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492 |
- /* dhsein.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static logical c_false = FALSE_;
- static logical c_true = TRUE_;
- /* Subroutine */ int _starpu_dhsein_(char *side, char *eigsrc, char *initv, logical *
- select, integer *n, doublereal *h__, integer *ldh, doublereal *wr,
- doublereal *wi, doublereal *vl, integer *ldvl, doublereal *vr,
- integer *ldvr, integer *mm, integer *m, doublereal *work, integer *
- ifaill, integer *ifailr, integer *info)
- {
- /* System generated locals */
- integer h_dim1, h_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
- i__2;
- doublereal d__1, d__2;
- /* Local variables */
- integer i__, k, kl, kr, kln, ksi;
- doublereal wki;
- integer ksr;
- doublereal ulp, wkr, eps3;
- logical pair;
- doublereal unfl;
- extern logical _starpu_lsame_(char *, char *);
- integer iinfo;
- logical leftv, bothv;
- doublereal hnorm;
- extern doublereal _starpu_dlamch_(char *);
- extern /* Subroutine */ int _starpu_dlaein_(logical *, logical *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *, integer *, doublereal *, doublereal *
- , doublereal *, doublereal *, integer *);
- extern doublereal _starpu_dlanhs_(char *, integer *, doublereal *, integer *,
- doublereal *);
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- doublereal bignum;
- logical noinit;
- integer ldwork;
- logical rightv, fromqr;
- doublereal smlnum;
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DHSEIN uses inverse iteration to find specified right and/or left */
- /* eigenvectors of a real upper Hessenberg matrix H. */
- /* The right eigenvector x and the left eigenvector y of the matrix H */
- /* corresponding to an eigenvalue w are defined by: */
- /* H * x = w * x, y**h * H = w * y**h */
- /* where y**h denotes the conjugate transpose of the vector y. */
- /* Arguments */
- /* ========= */
- /* SIDE (input) CHARACTER*1 */
- /* = 'R': compute right eigenvectors only; */
- /* = 'L': compute left eigenvectors only; */
- /* = 'B': compute both right and left eigenvectors. */
- /* EIGSRC (input) CHARACTER*1 */
- /* Specifies the source of eigenvalues supplied in (WR,WI): */
- /* = 'Q': the eigenvalues were found using DHSEQR; thus, if */
- /* H has zero subdiagonal elements, and so is */
- /* block-triangular, then the j-th eigenvalue can be */
- /* assumed to be an eigenvalue of the block containing */
- /* the j-th row/column. This property allows DHSEIN to */
- /* perform inverse iteration on just one diagonal block. */
- /* = 'N': no assumptions are made on the correspondence */
- /* between eigenvalues and diagonal blocks. In this */
- /* case, DHSEIN must always perform inverse iteration */
- /* using the whole matrix H. */
- /* INITV (input) CHARACTER*1 */
- /* = 'N': no initial vectors are supplied; */
- /* = 'U': user-supplied initial vectors are stored in the arrays */
- /* VL and/or VR. */
- /* SELECT (input/output) LOGICAL array, dimension (N) */
- /* Specifies the eigenvectors to be computed. To select the */
- /* real eigenvector corresponding to a real eigenvalue WR(j), */
- /* SELECT(j) must be set to .TRUE.. To select the complex */
- /* eigenvector corresponding to a complex eigenvalue */
- /* (WR(j),WI(j)), with complex conjugate (WR(j+1),WI(j+1)), */
- /* either SELECT(j) or SELECT(j+1) or both must be set to */
- /* .TRUE.; then on exit SELECT(j) is .TRUE. and SELECT(j+1) is */
- /* .FALSE.. */
- /* N (input) INTEGER */
- /* The order of the matrix H. N >= 0. */
- /* H (input) DOUBLE PRECISION array, dimension (LDH,N) */
- /* The upper Hessenberg matrix H. */
- /* LDH (input) INTEGER */
- /* The leading dimension of the array H. LDH >= max(1,N). */
- /* WR (input/output) DOUBLE PRECISION array, dimension (N) */
- /* WI (input) DOUBLE PRECISION array, dimension (N) */
- /* On entry, the real and imaginary parts of the eigenvalues of */
- /* H; a complex conjugate pair of eigenvalues must be stored in */
- /* consecutive elements of WR and WI. */
- /* On exit, WR may have been altered since close eigenvalues */
- /* are perturbed slightly in searching for independent */
- /* eigenvectors. */
- /* VL (input/output) DOUBLE PRECISION array, dimension (LDVL,MM) */
- /* On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must */
- /* contain starting vectors for the inverse iteration for the */
- /* left eigenvectors; the starting vector for each eigenvector */
- /* must be in the same column(s) in which the eigenvector will */
- /* be stored. */
- /* On exit, if SIDE = 'L' or 'B', the left eigenvectors */
- /* specified by SELECT will be stored consecutively in the */
- /* columns of VL, in the same order as their eigenvalues. A */
- /* complex eigenvector corresponding to a complex eigenvalue is */
- /* stored in two consecutive columns, the first holding the real */
- /* part and the second the imaginary part. */
- /* If SIDE = 'R', VL is not referenced. */
- /* LDVL (input) INTEGER */
- /* The leading dimension of the array VL. */
- /* LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise. */
- /* VR (input/output) DOUBLE PRECISION array, dimension (LDVR,MM) */
- /* On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must */
- /* contain starting vectors for the inverse iteration for the */
- /* right eigenvectors; the starting vector for each eigenvector */
- /* must be in the same column(s) in which the eigenvector will */
- /* be stored. */
- /* On exit, if SIDE = 'R' or 'B', the right eigenvectors */
- /* specified by SELECT will be stored consecutively in the */
- /* columns of VR, in the same order as their eigenvalues. A */
- /* complex eigenvector corresponding to a complex eigenvalue is */
- /* stored in two consecutive columns, the first holding the real */
- /* part and the second the imaginary part. */
- /* If SIDE = 'L', VR is not referenced. */
- /* LDVR (input) INTEGER */
- /* The leading dimension of the array VR. */
- /* LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise. */
- /* MM (input) INTEGER */
- /* The number of columns in the arrays VL and/or VR. MM >= M. */
- /* M (output) INTEGER */
- /* The number of columns in the arrays VL and/or VR required to */
- /* store the eigenvectors; each selected real eigenvector */
- /* occupies one column and each selected complex eigenvector */
- /* occupies two columns. */
- /* WORK (workspace) DOUBLE PRECISION array, dimension ((N+2)*N) */
- /* IFAILL (output) INTEGER array, dimension (MM) */
- /* If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left */
- /* eigenvector in the i-th column of VL (corresponding to the */
- /* eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the */
- /* eigenvector converged satisfactorily. If the i-th and (i+1)th */
- /* columns of VL hold a complex eigenvector, then IFAILL(i) and */
- /* IFAILL(i+1) are set to the same value. */
- /* If SIDE = 'R', IFAILL is not referenced. */
- /* IFAILR (output) INTEGER array, dimension (MM) */
- /* If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right */
- /* eigenvector in the i-th column of VR (corresponding to the */
- /* eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the */
- /* eigenvector converged satisfactorily. If the i-th and (i+1)th */
- /* columns of VR hold a complex eigenvector, then IFAILR(i) and */
- /* IFAILR(i+1) are set to the same value. */
- /* If SIDE = 'L', IFAILR is not referenced. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > 0: if INFO = i, i is the number of eigenvectors which */
- /* failed to converge; see IFAILL and IFAILR for further */
- /* details. */
- /* Further Details */
- /* =============== */
- /* Each eigenvector is normalized so that the element of largest */
- /* magnitude has magnitude 1; here the magnitude of a complex number */
- /* (x,y) is taken to be |x|+|y|. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Decode and test the input parameters. */
- /* Parameter adjustments */
- --select;
- h_dim1 = *ldh;
- h_offset = 1 + h_dim1;
- h__ -= h_offset;
- --wr;
- --wi;
- vl_dim1 = *ldvl;
- vl_offset = 1 + vl_dim1;
- vl -= vl_offset;
- vr_dim1 = *ldvr;
- vr_offset = 1 + vr_dim1;
- vr -= vr_offset;
- --work;
- --ifaill;
- --ifailr;
- /* Function Body */
- bothv = _starpu_lsame_(side, "B");
- rightv = _starpu_lsame_(side, "R") || bothv;
- leftv = _starpu_lsame_(side, "L") || bothv;
- fromqr = _starpu_lsame_(eigsrc, "Q");
- noinit = _starpu_lsame_(initv, "N");
- /* Set M to the number of columns required to store the selected */
- /* eigenvectors, and standardize the array SELECT. */
- *m = 0;
- pair = FALSE_;
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
- if (pair) {
- pair = FALSE_;
- select[k] = FALSE_;
- } else {
- if (wi[k] == 0.) {
- if (select[k]) {
- ++(*m);
- }
- } else {
- pair = TRUE_;
- if (select[k] || select[k + 1]) {
- select[k] = TRUE_;
- *m += 2;
- }
- }
- }
- /* L10: */
- }
- *info = 0;
- if (! rightv && ! leftv) {
- *info = -1;
- } else if (! fromqr && ! _starpu_lsame_(eigsrc, "N")) {
- *info = -2;
- } else if (! noinit && ! _starpu_lsame_(initv, "U")) {
- *info = -3;
- } else if (*n < 0) {
- *info = -5;
- } else if (*ldh < max(1,*n)) {
- *info = -7;
- } else if (*ldvl < 1 || leftv && *ldvl < *n) {
- *info = -11;
- } else if (*ldvr < 1 || rightv && *ldvr < *n) {
- *info = -13;
- } else if (*mm < *m) {
- *info = -14;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DHSEIN", &i__1);
- return 0;
- }
- /* Quick return if possible. */
- if (*n == 0) {
- return 0;
- }
- /* Set machine-dependent constants. */
- unfl = _starpu_dlamch_("Safe minimum");
- ulp = _starpu_dlamch_("Precision");
- smlnum = unfl * (*n / ulp);
- bignum = (1. - ulp) / smlnum;
- ldwork = *n + 1;
- kl = 1;
- kln = 0;
- if (fromqr) {
- kr = 0;
- } else {
- kr = *n;
- }
- ksr = 1;
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
- if (select[k]) {
- /* Compute eigenvector(s) corresponding to W(K). */
- if (fromqr) {
- /* If affiliation of eigenvalues is known, check whether */
- /* the matrix splits. */
- /* Determine KL and KR such that 1 <= KL <= K <= KR <= N */
- /* and H(KL,KL-1) and H(KR+1,KR) are zero (or KL = 1 or */
- /* KR = N). */
- /* Then inverse iteration can be performed with the */
- /* submatrix H(KL:N,KL:N) for a left eigenvector, and with */
- /* the submatrix H(1:KR,1:KR) for a right eigenvector. */
- i__2 = kl + 1;
- for (i__ = k; i__ >= i__2; --i__) {
- if (h__[i__ + (i__ - 1) * h_dim1] == 0.) {
- goto L30;
- }
- /* L20: */
- }
- L30:
- kl = i__;
- if (k > kr) {
- i__2 = *n - 1;
- for (i__ = k; i__ <= i__2; ++i__) {
- if (h__[i__ + 1 + i__ * h_dim1] == 0.) {
- goto L50;
- }
- /* L40: */
- }
- L50:
- kr = i__;
- }
- }
- if (kl != kln) {
- kln = kl;
- /* Compute infinity-norm of submatrix H(KL:KR,KL:KR) if it */
- /* has not ben computed before. */
- i__2 = kr - kl + 1;
- hnorm = _starpu_dlanhs_("I", &i__2, &h__[kl + kl * h_dim1], ldh, &
- work[1]);
- if (hnorm > 0.) {
- eps3 = hnorm * ulp;
- } else {
- eps3 = smlnum;
- }
- }
- /* Perturb eigenvalue if it is close to any previous */
- /* selected eigenvalues affiliated to the submatrix */
- /* H(KL:KR,KL:KR). Close roots are modified by EPS3. */
- wkr = wr[k];
- wki = wi[k];
- L60:
- i__2 = kl;
- for (i__ = k - 1; i__ >= i__2; --i__) {
- if (select[i__] && (d__1 = wr[i__] - wkr, abs(d__1)) + (d__2 =
- wi[i__] - wki, abs(d__2)) < eps3) {
- wkr += eps3;
- goto L60;
- }
- /* L70: */
- }
- wr[k] = wkr;
- pair = wki != 0.;
- if (pair) {
- ksi = ksr + 1;
- } else {
- ksi = ksr;
- }
- if (leftv) {
- /* Compute left eigenvector. */
- i__2 = *n - kl + 1;
- _starpu_dlaein_(&c_false, &noinit, &i__2, &h__[kl + kl * h_dim1], ldh,
- &wkr, &wki, &vl[kl + ksr * vl_dim1], &vl[kl + ksi *
- vl_dim1], &work[1], &ldwork, &work[*n * *n + *n + 1],
- &eps3, &smlnum, &bignum, &iinfo);
- if (iinfo > 0) {
- if (pair) {
- *info += 2;
- } else {
- ++(*info);
- }
- ifaill[ksr] = k;
- ifaill[ksi] = k;
- } else {
- ifaill[ksr] = 0;
- ifaill[ksi] = 0;
- }
- i__2 = kl - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- vl[i__ + ksr * vl_dim1] = 0.;
- /* L80: */
- }
- if (pair) {
- i__2 = kl - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- vl[i__ + ksi * vl_dim1] = 0.;
- /* L90: */
- }
- }
- }
- if (rightv) {
- /* Compute right eigenvector. */
- _starpu_dlaein_(&c_true, &noinit, &kr, &h__[h_offset], ldh, &wkr, &
- wki, &vr[ksr * vr_dim1 + 1], &vr[ksi * vr_dim1 + 1], &
- work[1], &ldwork, &work[*n * *n + *n + 1], &eps3, &
- smlnum, &bignum, &iinfo);
- if (iinfo > 0) {
- if (pair) {
- *info += 2;
- } else {
- ++(*info);
- }
- ifailr[ksr] = k;
- ifailr[ksi] = k;
- } else {
- ifailr[ksr] = 0;
- ifailr[ksi] = 0;
- }
- i__2 = *n;
- for (i__ = kr + 1; i__ <= i__2; ++i__) {
- vr[i__ + ksr * vr_dim1] = 0.;
- /* L100: */
- }
- if (pair) {
- i__2 = *n;
- for (i__ = kr + 1; i__ <= i__2; ++i__) {
- vr[i__ + ksi * vr_dim1] = 0.;
- /* L110: */
- }
- }
- }
- if (pair) {
- ksr += 2;
- } else {
- ++ksr;
- }
- }
- /* L120: */
- }
- return 0;
- /* End of DHSEIN */
- } /* _starpu_dhsein_ */
|