123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406 |
- /* dggsvd.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- /* Subroutine */ int _starpu_dggsvd_(char *jobu, char *jobv, char *jobq, integer *m,
- integer *n, integer *p, integer *k, integer *l, doublereal *a,
- integer *lda, doublereal *b, integer *ldb, doublereal *alpha,
- doublereal *beta, doublereal *u, integer *ldu, doublereal *v, integer
- *ldv, doublereal *q, integer *ldq, doublereal *work, integer *iwork,
- integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, u_dim1,
- u_offset, v_dim1, v_offset, i__1, i__2;
- /* Local variables */
- integer i__, j;
- doublereal ulp;
- integer ibnd;
- doublereal tola;
- integer isub;
- doublereal tolb, unfl, temp, smax;
- extern logical _starpu_lsame_(char *, char *);
- doublereal anorm, bnorm;
- extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- logical wantq, wantu, wantv;
- extern doublereal _starpu_dlamch_(char *), _starpu_dlange_(char *, integer *,
- integer *, doublereal *, integer *, doublereal *);
- extern /* Subroutine */ int _starpu_dtgsja_(char *, char *, char *, integer *,
- integer *, integer *, integer *, integer *, doublereal *, integer
- *, doublereal *, integer *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- integer *);
- integer ncycle;
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *), _starpu_dggsvp_(
- char *, char *, char *, integer *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- doublereal *, integer *, integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, integer *, integer *,
- doublereal *, doublereal *, integer *);
- /* -- LAPACK driver routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DGGSVD computes the generalized singular value decomposition (GSVD) */
- /* of an M-by-N real matrix A and P-by-N real matrix B: */
- /* U'*A*Q = D1*( 0 R ), V'*B*Q = D2*( 0 R ) */
- /* where U, V and Q are orthogonal matrices, and Z' is the transpose */
- /* of Z. Let K+L = the effective numerical rank of the matrix (A',B')', */
- /* then R is a K+L-by-K+L nonsingular upper triangular matrix, D1 and */
- /* D2 are M-by-(K+L) and P-by-(K+L) "diagonal" matrices and of the */
- /* following structures, respectively: */
- /* If M-K-L >= 0, */
- /* K L */
- /* D1 = K ( I 0 ) */
- /* L ( 0 C ) */
- /* M-K-L ( 0 0 ) */
- /* K L */
- /* D2 = L ( 0 S ) */
- /* P-L ( 0 0 ) */
- /* N-K-L K L */
- /* ( 0 R ) = K ( 0 R11 R12 ) */
- /* L ( 0 0 R22 ) */
- /* where */
- /* C = diag( ALPHA(K+1), ... , ALPHA(K+L) ), */
- /* S = diag( BETA(K+1), ... , BETA(K+L) ), */
- /* C**2 + S**2 = I. */
- /* R is stored in A(1:K+L,N-K-L+1:N) on exit. */
- /* If M-K-L < 0, */
- /* K M-K K+L-M */
- /* D1 = K ( I 0 0 ) */
- /* M-K ( 0 C 0 ) */
- /* K M-K K+L-M */
- /* D2 = M-K ( 0 S 0 ) */
- /* K+L-M ( 0 0 I ) */
- /* P-L ( 0 0 0 ) */
- /* N-K-L K M-K K+L-M */
- /* ( 0 R ) = K ( 0 R11 R12 R13 ) */
- /* M-K ( 0 0 R22 R23 ) */
- /* K+L-M ( 0 0 0 R33 ) */
- /* where */
- /* C = diag( ALPHA(K+1), ... , ALPHA(M) ), */
- /* S = diag( BETA(K+1), ... , BETA(M) ), */
- /* C**2 + S**2 = I. */
- /* (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored */
- /* ( 0 R22 R23 ) */
- /* in B(M-K+1:L,N+M-K-L+1:N) on exit. */
- /* The routine computes C, S, R, and optionally the orthogonal */
- /* transformation matrices U, V and Q. */
- /* In particular, if B is an N-by-N nonsingular matrix, then the GSVD of */
- /* A and B implicitly gives the SVD of A*inv(B): */
- /* A*inv(B) = U*(D1*inv(D2))*V'. */
- /* If ( A',B')' has orthonormal columns, then the GSVD of A and B is */
- /* also equal to the CS decomposition of A and B. Furthermore, the GSVD */
- /* can be used to derive the solution of the eigenvalue problem: */
- /* A'*A x = lambda* B'*B x. */
- /* In some literature, the GSVD of A and B is presented in the form */
- /* U'*A*X = ( 0 D1 ), V'*B*X = ( 0 D2 ) */
- /* where U and V are orthogonal and X is nonsingular, D1 and D2 are */
- /* ``diagonal''. The former GSVD form can be converted to the latter */
- /* form by taking the nonsingular matrix X as */
- /* X = Q*( I 0 ) */
- /* ( 0 inv(R) ). */
- /* Arguments */
- /* ========= */
- /* JOBU (input) CHARACTER*1 */
- /* = 'U': Orthogonal matrix U is computed; */
- /* = 'N': U is not computed. */
- /* JOBV (input) CHARACTER*1 */
- /* = 'V': Orthogonal matrix V is computed; */
- /* = 'N': V is not computed. */
- /* JOBQ (input) CHARACTER*1 */
- /* = 'Q': Orthogonal matrix Q is computed; */
- /* = 'N': Q is not computed. */
- /* M (input) INTEGER */
- /* The number of rows of the matrix A. M >= 0. */
- /* N (input) INTEGER */
- /* The number of columns of the matrices A and B. N >= 0. */
- /* P (input) INTEGER */
- /* The number of rows of the matrix B. P >= 0. */
- /* K (output) INTEGER */
- /* L (output) INTEGER */
- /* On exit, K and L specify the dimension of the subblocks */
- /* described in the Purpose section. */
- /* K + L = effective numerical rank of (A',B')'. */
- /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
- /* On entry, the M-by-N matrix A. */
- /* On exit, A contains the triangular matrix R, or part of R. */
- /* See Purpose for details. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,M). */
- /* B (input/output) DOUBLE PRECISION array, dimension (LDB,N) */
- /* On entry, the P-by-N matrix B. */
- /* On exit, B contains the triangular matrix R if M-K-L < 0. */
- /* See Purpose for details. */
- /* LDB (input) INTEGER */
- /* The leading dimension of the array B. LDB >= max(1,P). */
- /* ALPHA (output) DOUBLE PRECISION array, dimension (N) */
- /* BETA (output) DOUBLE PRECISION array, dimension (N) */
- /* On exit, ALPHA and BETA contain the generalized singular */
- /* value pairs of A and B; */
- /* ALPHA(1:K) = 1, */
- /* BETA(1:K) = 0, */
- /* and if M-K-L >= 0, */
- /* ALPHA(K+1:K+L) = C, */
- /* BETA(K+1:K+L) = S, */
- /* or if M-K-L < 0, */
- /* ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0 */
- /* BETA(K+1:M) =S, BETA(M+1:K+L) =1 */
- /* and */
- /* ALPHA(K+L+1:N) = 0 */
- /* BETA(K+L+1:N) = 0 */
- /* U (output) DOUBLE PRECISION array, dimension (LDU,M) */
- /* If JOBU = 'U', U contains the M-by-M orthogonal matrix U. */
- /* If JOBU = 'N', U is not referenced. */
- /* LDU (input) INTEGER */
- /* The leading dimension of the array U. LDU >= max(1,M) if */
- /* JOBU = 'U'; LDU >= 1 otherwise. */
- /* V (output) DOUBLE PRECISION array, dimension (LDV,P) */
- /* If JOBV = 'V', V contains the P-by-P orthogonal matrix V. */
- /* If JOBV = 'N', V is not referenced. */
- /* LDV (input) INTEGER */
- /* The leading dimension of the array V. LDV >= max(1,P) if */
- /* JOBV = 'V'; LDV >= 1 otherwise. */
- /* Q (output) DOUBLE PRECISION array, dimension (LDQ,N) */
- /* If JOBQ = 'Q', Q contains the N-by-N orthogonal matrix Q. */
- /* If JOBQ = 'N', Q is not referenced. */
- /* LDQ (input) INTEGER */
- /* The leading dimension of the array Q. LDQ >= max(1,N) if */
- /* JOBQ = 'Q'; LDQ >= 1 otherwise. */
- /* WORK (workspace) DOUBLE PRECISION array, */
- /* dimension (max(3*N,M,P)+N) */
- /* IWORK (workspace/output) INTEGER array, dimension (N) */
- /* On exit, IWORK stores the sorting information. More */
- /* precisely, the following loop will sort ALPHA */
- /* for I = K+1, min(M,K+L) */
- /* swap ALPHA(I) and ALPHA(IWORK(I)) */
- /* endfor */
- /* such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N). */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > 0: if INFO = 1, the Jacobi-type procedure failed to */
- /* converge. For further details, see subroutine DTGSJA. */
- /* Internal Parameters */
- /* =================== */
- /* TOLA DOUBLE PRECISION */
- /* TOLB DOUBLE PRECISION */
- /* TOLA and TOLB are the thresholds to determine the effective */
- /* rank of (A',B')'. Generally, they are set to */
- /* TOLA = MAX(M,N)*norm(A)*MAZHEPS, */
- /* TOLB = MAX(P,N)*norm(B)*MAZHEPS. */
- /* The size of TOLA and TOLB may affect the size of backward */
- /* errors of the decomposition. */
- /* Further Details */
- /* =============== */
- /* 2-96 Based on modifications by */
- /* Ming Gu and Huan Ren, Computer Science Division, University of */
- /* California at Berkeley, USA */
- /* ===================================================================== */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- --alpha;
- --beta;
- u_dim1 = *ldu;
- u_offset = 1 + u_dim1;
- u -= u_offset;
- v_dim1 = *ldv;
- v_offset = 1 + v_dim1;
- v -= v_offset;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1;
- q -= q_offset;
- --work;
- --iwork;
- /* Function Body */
- wantu = _starpu_lsame_(jobu, "U");
- wantv = _starpu_lsame_(jobv, "V");
- wantq = _starpu_lsame_(jobq, "Q");
- *info = 0;
- if (! (wantu || _starpu_lsame_(jobu, "N"))) {
- *info = -1;
- } else if (! (wantv || _starpu_lsame_(jobv, "N"))) {
- *info = -2;
- } else if (! (wantq || _starpu_lsame_(jobq, "N"))) {
- *info = -3;
- } else if (*m < 0) {
- *info = -4;
- } else if (*n < 0) {
- *info = -5;
- } else if (*p < 0) {
- *info = -6;
- } else if (*lda < max(1,*m)) {
- *info = -10;
- } else if (*ldb < max(1,*p)) {
- *info = -12;
- } else if (*ldu < 1 || wantu && *ldu < *m) {
- *info = -16;
- } else if (*ldv < 1 || wantv && *ldv < *p) {
- *info = -18;
- } else if (*ldq < 1 || wantq && *ldq < *n) {
- *info = -20;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DGGSVD", &i__1);
- return 0;
- }
- /* Compute the Frobenius norm of matrices A and B */
- anorm = _starpu_dlange_("1", m, n, &a[a_offset], lda, &work[1]);
- bnorm = _starpu_dlange_("1", p, n, &b[b_offset], ldb, &work[1]);
- /* Get machine precision and set up threshold for determining */
- /* the effective numerical rank of the matrices A and B. */
- ulp = _starpu_dlamch_("Precision");
- unfl = _starpu_dlamch_("Safe Minimum");
- tola = max(*m,*n) * max(anorm,unfl) * ulp;
- tolb = max(*p,*n) * max(bnorm,unfl) * ulp;
- /* Preprocessing */
- _starpu_dggsvp_(jobu, jobv, jobq, m, p, n, &a[a_offset], lda, &b[b_offset], ldb, &
- tola, &tolb, k, l, &u[u_offset], ldu, &v[v_offset], ldv, &q[
- q_offset], ldq, &iwork[1], &work[1], &work[*n + 1], info);
- /* Compute the GSVD of two upper "triangular" matrices */
- _starpu_dtgsja_(jobu, jobv, jobq, m, p, n, k, l, &a[a_offset], lda, &b[b_offset],
- ldb, &tola, &tolb, &alpha[1], &beta[1], &u[u_offset], ldu, &v[
- v_offset], ldv, &q[q_offset], ldq, &work[1], &ncycle, info);
- /* Sort the singular values and store the pivot indices in IWORK */
- /* Copy ALPHA to WORK, then sort ALPHA in WORK */
- _starpu_dcopy_(n, &alpha[1], &c__1, &work[1], &c__1);
- /* Computing MIN */
- i__1 = *l, i__2 = *m - *k;
- ibnd = min(i__1,i__2);
- i__1 = ibnd;
- for (i__ = 1; i__ <= i__1; ++i__) {
- /* Scan for largest ALPHA(K+I) */
- isub = i__;
- smax = work[*k + i__];
- i__2 = ibnd;
- for (j = i__ + 1; j <= i__2; ++j) {
- temp = work[*k + j];
- if (temp > smax) {
- isub = j;
- smax = temp;
- }
- /* L10: */
- }
- if (isub != i__) {
- work[*k + isub] = work[*k + i__];
- work[*k + i__] = smax;
- iwork[*k + i__] = *k + isub;
- } else {
- iwork[*k + i__] = *k + i__;
- }
- /* L20: */
- }
- return 0;
- /* End of DGGSVD */
- } /* _starpu_dggsvd_ */
|