123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332 |
- /* dggglm.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static integer c_n1 = -1;
- static doublereal c_b32 = -1.;
- static doublereal c_b34 = 1.;
- /* Subroutine */ int _starpu_dggglm_(integer *n, integer *m, integer *p, doublereal *
- a, integer *lda, doublereal *b, integer *ldb, doublereal *d__,
- doublereal *x, doublereal *y, doublereal *work, integer *lwork,
- integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
- /* Local variables */
- integer i__, nb, np, nb1, nb2, nb3, nb4, lopt;
- extern /* Subroutine */ int _starpu_dgemv_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *), _starpu_dcopy_(integer *,
- doublereal *, integer *, doublereal *, integer *), _starpu_dggqrf_(
- integer *, integer *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, doublereal *,
- integer *, integer *), _starpu_xerbla_(char *, integer *);
- extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *);
- integer lwkmin;
- extern /* Subroutine */ int _starpu_dormqr_(char *, char *, integer *, integer *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, integer *),
- _starpu_dormrq_(char *, char *, integer *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *,
- doublereal *, integer *, integer *);
- integer lwkopt;
- logical lquery;
- extern /* Subroutine */ int _starpu_dtrtrs_(char *, char *, char *, integer *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- integer *);
- /* -- LAPACK driver routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DGGGLM solves a general Gauss-Markov linear model (GLM) problem: */
- /* minimize || y ||_2 subject to d = A*x + B*y */
- /* x */
- /* where A is an N-by-M matrix, B is an N-by-P matrix, and d is a */
- /* given N-vector. It is assumed that M <= N <= M+P, and */
- /* rank(A) = M and rank( A B ) = N. */
- /* Under these assumptions, the constrained equation is always */
- /* consistent, and there is a unique solution x and a minimal 2-norm */
- /* solution y, which is obtained using a generalized QR factorization */
- /* of the matrices (A, B) given by */
- /* A = Q*(R), B = Q*T*Z. */
- /* (0) */
- /* In particular, if matrix B is square nonsingular, then the problem */
- /* GLM is equivalent to the following weighted linear least squares */
- /* problem */
- /* minimize || inv(B)*(d-A*x) ||_2 */
- /* x */
- /* where inv(B) denotes the inverse of B. */
- /* Arguments */
- /* ========= */
- /* N (input) INTEGER */
- /* The number of rows of the matrices A and B. N >= 0. */
- /* M (input) INTEGER */
- /* The number of columns of the matrix A. 0 <= M <= N. */
- /* P (input) INTEGER */
- /* The number of columns of the matrix B. P >= N-M. */
- /* A (input/output) DOUBLE PRECISION array, dimension (LDA,M) */
- /* On entry, the N-by-M matrix A. */
- /* On exit, the upper triangular part of the array A contains */
- /* the M-by-M upper triangular matrix R. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,N). */
- /* B (input/output) DOUBLE PRECISION array, dimension (LDB,P) */
- /* On entry, the N-by-P matrix B. */
- /* On exit, if N <= P, the upper triangle of the subarray */
- /* B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T; */
- /* if N > P, the elements on and above the (N-P)th subdiagonal */
- /* contain the N-by-P upper trapezoidal matrix T. */
- /* LDB (input) INTEGER */
- /* The leading dimension of the array B. LDB >= max(1,N). */
- /* D (input/output) DOUBLE PRECISION array, dimension (N) */
- /* On entry, D is the left hand side of the GLM equation. */
- /* On exit, D is destroyed. */
- /* X (output) DOUBLE PRECISION array, dimension (M) */
- /* Y (output) DOUBLE PRECISION array, dimension (P) */
- /* On exit, X and Y are the solutions of the GLM problem. */
- /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
- /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* LWORK (input) INTEGER */
- /* The dimension of the array WORK. LWORK >= max(1,N+M+P). */
- /* For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB, */
- /* where NB is an upper bound for the optimal blocksizes for */
- /* DGEQRF, SGERQF, DORMQR and SORMRQ. */
- /* If LWORK = -1, then a workspace query is assumed; the routine */
- /* only calculates the optimal size of the WORK array, returns */
- /* this value as the first entry of the WORK array, and no error */
- /* message related to LWORK is issued by XERBLA. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit. */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* = 1: the upper triangular factor R associated with A in the */
- /* generalized QR factorization of the pair (A, B) is */
- /* singular, so that rank(A) < M; the least squares */
- /* solution could not be computed. */
- /* = 2: the bottom (N-M) by (N-M) part of the upper trapezoidal */
- /* factor T associated with B in the generalized QR */
- /* factorization of the pair (A, B) is singular, so that */
- /* rank( A B ) < N; the least squares solution could not */
- /* be computed. */
- /* =================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- --d__;
- --x;
- --y;
- --work;
- /* Function Body */
- *info = 0;
- np = min(*n,*p);
- lquery = *lwork == -1;
- if (*n < 0) {
- *info = -1;
- } else if (*m < 0 || *m > *n) {
- *info = -2;
- } else if (*p < 0 || *p < *n - *m) {
- *info = -3;
- } else if (*lda < max(1,*n)) {
- *info = -5;
- } else if (*ldb < max(1,*n)) {
- *info = -7;
- }
- /* Calculate workspace */
- if (*info == 0) {
- if (*n == 0) {
- lwkmin = 1;
- lwkopt = 1;
- } else {
- nb1 = _starpu_ilaenv_(&c__1, "DGEQRF", " ", n, m, &c_n1, &c_n1);
- nb2 = _starpu_ilaenv_(&c__1, "DGERQF", " ", n, m, &c_n1, &c_n1);
- nb3 = _starpu_ilaenv_(&c__1, "DORMQR", " ", n, m, p, &c_n1);
- nb4 = _starpu_ilaenv_(&c__1, "DORMRQ", " ", n, m, p, &c_n1);
- /* Computing MAX */
- i__1 = max(nb1,nb2), i__1 = max(i__1,nb3);
- nb = max(i__1,nb4);
- lwkmin = *m + *n + *p;
- lwkopt = *m + np + max(*n,*p) * nb;
- }
- work[1] = (doublereal) lwkopt;
- if (*lwork < lwkmin && ! lquery) {
- *info = -12;
- }
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DGGGLM", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0) {
- return 0;
- }
- /* Compute the GQR factorization of matrices A and B: */
- /* Q'*A = ( R11 ) M, Q'*B*Z' = ( T11 T12 ) M */
- /* ( 0 ) N-M ( 0 T22 ) N-M */
- /* M M+P-N N-M */
- /* where R11 and T22 are upper triangular, and Q and Z are */
- /* orthogonal. */
- i__1 = *lwork - *m - np;
- _starpu_dggqrf_(n, m, p, &a[a_offset], lda, &work[1], &b[b_offset], ldb, &work[*m
- + 1], &work[*m + np + 1], &i__1, info);
- lopt = (integer) work[*m + np + 1];
- /* Update left-hand-side vector d = Q'*d = ( d1 ) M */
- /* ( d2 ) N-M */
- i__1 = max(1,*n);
- i__2 = *lwork - *m - np;
- _starpu_dormqr_("Left", "Transpose", n, &c__1, m, &a[a_offset], lda, &work[1], &
- d__[1], &i__1, &work[*m + np + 1], &i__2, info);
- /* Computing MAX */
- i__1 = lopt, i__2 = (integer) work[*m + np + 1];
- lopt = max(i__1,i__2);
- /* Solve T22*y2 = d2 for y2 */
- if (*n > *m) {
- i__1 = *n - *m;
- i__2 = *n - *m;
- _starpu_dtrtrs_("Upper", "No transpose", "Non unit", &i__1, &c__1, &b[*m + 1
- + (*m + *p - *n + 1) * b_dim1], ldb, &d__[*m + 1], &i__2,
- info);
- if (*info > 0) {
- *info = 1;
- return 0;
- }
- i__1 = *n - *m;
- _starpu_dcopy_(&i__1, &d__[*m + 1], &c__1, &y[*m + *p - *n + 1], &c__1);
- }
- /* Set y1 = 0 */
- i__1 = *m + *p - *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- y[i__] = 0.;
- /* L10: */
- }
- /* Update d1 = d1 - T12*y2 */
- i__1 = *n - *m;
- _starpu_dgemv_("No transpose", m, &i__1, &c_b32, &b[(*m + *p - *n + 1) * b_dim1 +
- 1], ldb, &y[*m + *p - *n + 1], &c__1, &c_b34, &d__[1], &c__1);
- /* Solve triangular system: R11*x = d1 */
- if (*m > 0) {
- _starpu_dtrtrs_("Upper", "No Transpose", "Non unit", m, &c__1, &a[a_offset],
- lda, &d__[1], m, info);
- if (*info > 0) {
- *info = 2;
- return 0;
- }
- /* Copy D to X */
- _starpu_dcopy_(m, &d__[1], &c__1, &x[1], &c__1);
- }
- /* Backward transformation y = Z'*y */
- /* Computing MAX */
- i__1 = 1, i__2 = *n - *p + 1;
- i__3 = max(1,*p);
- i__4 = *lwork - *m - np;
- _starpu_dormrq_("Left", "Transpose", p, &c__1, &np, &b[max(i__1, i__2)+ b_dim1],
- ldb, &work[*m + 1], &y[1], &i__3, &work[*m + np + 1], &i__4, info);
- /* Computing MAX */
- i__1 = lopt, i__2 = (integer) work[*m + np + 1];
- work[1] = (doublereal) (*m + np + max(i__1,i__2));
- return 0;
- /* End of DGGGLM */
- } /* _starpu_dggglm_ */
|