123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819 |
- /* dggesx.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static integer c__0 = 0;
- static integer c_n1 = -1;
- static doublereal c_b42 = 0.;
- static doublereal c_b43 = 1.;
- /* Subroutine */ int _starpu_dggesx_(char *jobvsl, char *jobvsr, char *sort, L_fp
- selctg, char *sense, integer *n, doublereal *a, integer *lda,
- doublereal *b, integer *ldb, integer *sdim, doublereal *alphar,
- doublereal *alphai, doublereal *beta, doublereal *vsl, integer *ldvsl,
- doublereal *vsr, integer *ldvsr, doublereal *rconde, doublereal *
- rcondv, doublereal *work, integer *lwork, integer *iwork, integer *
- liwork, logical *bwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset,
- vsr_dim1, vsr_offset, i__1, i__2;
- doublereal d__1;
- /* Builtin functions */
- double sqrt(doublereal);
- /* Local variables */
- integer i__, ip;
- doublereal pl, pr, dif[2];
- integer ihi, ilo;
- doublereal eps;
- integer ijob;
- doublereal anrm, bnrm;
- integer ierr, itau, iwrk, lwrk;
- extern logical _starpu_lsame_(char *, char *);
- integer ileft, icols;
- logical cursl, ilvsl, ilvsr;
- integer irows;
- extern /* Subroutine */ int _starpu_dlabad_(doublereal *, doublereal *), _starpu_dggbak_(
- char *, char *, integer *, integer *, integer *, doublereal *,
- doublereal *, integer *, doublereal *, integer *, integer *), _starpu_dggbal_(char *, integer *, doublereal *, integer
- *, doublereal *, integer *, integer *, integer *, doublereal *,
- doublereal *, doublereal *, integer *);
- logical lst2sl;
- extern doublereal _starpu_dlamch_(char *), _starpu_dlange_(char *, integer *,
- integer *, doublereal *, integer *, doublereal *);
- extern /* Subroutine */ int _starpu_dgghrd_(char *, char *, integer *, integer *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, integer *, integer *), _starpu_dlascl_(char *, integer *, integer *, doublereal
- *, doublereal *, integer *, integer *, doublereal *, integer *,
- integer *);
- logical ilascl, ilbscl;
- extern /* Subroutine */ int _starpu_dgeqrf_(integer *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *, integer *),
- _starpu_dlacpy_(char *, integer *, integer *, doublereal *, integer *,
- doublereal *, integer *);
- doublereal safmin;
- extern /* Subroutine */ int _starpu_dlaset_(char *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, integer *);
- doublereal safmax;
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- doublereal bignum;
- extern /* Subroutine */ int _starpu_dhgeqz_(char *, char *, char *, integer *,
- integer *, integer *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- integer *);
- integer ijobvl, iright;
- extern /* Subroutine */ int _starpu_dtgsen_(integer *, logical *, logical *,
- logical *, integer *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, integer *, doublereal *,
- doublereal *, doublereal *, doublereal *, integer *, integer *,
- integer *, integer *);
- extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *);
- integer ijobvr;
- logical wantsb;
- integer liwmin;
- logical wantse, lastsl;
- doublereal anrmto, bnrmto;
- extern /* Subroutine */ int _starpu_dorgqr_(integer *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *,
- integer *);
- integer minwrk, maxwrk;
- logical wantsn;
- doublereal smlnum;
- extern /* Subroutine */ int _starpu_dormqr_(char *, char *, integer *, integer *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, integer *);
- logical wantst, lquery, wantsv;
- /* -- LAPACK driver routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* .. Function Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DGGESX computes for a pair of N-by-N real nonsymmetric matrices */
- /* (A,B), the generalized eigenvalues, the real Schur form (S,T), and, */
- /* optionally, the left and/or right matrices of Schur vectors (VSL and */
- /* VSR). This gives the generalized Schur factorization */
- /* (A,B) = ( (VSL) S (VSR)**T, (VSL) T (VSR)**T ) */
- /* Optionally, it also orders the eigenvalues so that a selected cluster */
- /* of eigenvalues appears in the leading diagonal blocks of the upper */
- /* quasi-triangular matrix S and the upper triangular matrix T; computes */
- /* a reciprocal condition number for the average of the selected */
- /* eigenvalues (RCONDE); and computes a reciprocal condition number for */
- /* the right and left deflating subspaces corresponding to the selected */
- /* eigenvalues (RCONDV). The leading columns of VSL and VSR then form */
- /* an orthonormal basis for the corresponding left and right eigenspaces */
- /* (deflating subspaces). */
- /* A generalized eigenvalue for a pair of matrices (A,B) is a scalar w */
- /* or a ratio alpha/beta = w, such that A - w*B is singular. It is */
- /* usually represented as the pair (alpha,beta), as there is a */
- /* reasonable interpretation for beta=0 or for both being zero. */
- /* A pair of matrices (S,T) is in generalized real Schur form if T is */
- /* upper triangular with non-negative diagonal and S is block upper */
- /* triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond */
- /* to real generalized eigenvalues, while 2-by-2 blocks of S will be */
- /* "standardized" by making the corresponding elements of T have the */
- /* form: */
- /* [ a 0 ] */
- /* [ 0 b ] */
- /* and the pair of corresponding 2-by-2 blocks in S and T will have a */
- /* complex conjugate pair of generalized eigenvalues. */
- /* Arguments */
- /* ========= */
- /* JOBVSL (input) CHARACTER*1 */
- /* = 'N': do not compute the left Schur vectors; */
- /* = 'V': compute the left Schur vectors. */
- /* JOBVSR (input) CHARACTER*1 */
- /* = 'N': do not compute the right Schur vectors; */
- /* = 'V': compute the right Schur vectors. */
- /* SORT (input) CHARACTER*1 */
- /* Specifies whether or not to order the eigenvalues on the */
- /* diagonal of the generalized Schur form. */
- /* = 'N': Eigenvalues are not ordered; */
- /* = 'S': Eigenvalues are ordered (see SELCTG). */
- /* SELCTG (external procedure) LOGICAL FUNCTION of three DOUBLE PRECISION arguments */
- /* SELCTG must be declared EXTERNAL in the calling subroutine. */
- /* If SORT = 'N', SELCTG is not referenced. */
- /* If SORT = 'S', SELCTG is used to select eigenvalues to sort */
- /* to the top left of the Schur form. */
- /* An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if */
- /* SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either */
- /* one of a complex conjugate pair of eigenvalues is selected, */
- /* then both complex eigenvalues are selected. */
- /* Note that a selected complex eigenvalue may no longer satisfy */
- /* SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) = .TRUE. after ordering, */
- /* since ordering may change the value of complex eigenvalues */
- /* (especially if the eigenvalue is ill-conditioned), in this */
- /* case INFO is set to N+3. */
- /* SENSE (input) CHARACTER*1 */
- /* Determines which reciprocal condition numbers are computed. */
- /* = 'N' : None are computed; */
- /* = 'E' : Computed for average of selected eigenvalues only; */
- /* = 'V' : Computed for selected deflating subspaces only; */
- /* = 'B' : Computed for both. */
- /* If SENSE = 'E', 'V', or 'B', SORT must equal 'S'. */
- /* N (input) INTEGER */
- /* The order of the matrices A, B, VSL, and VSR. N >= 0. */
- /* A (input/output) DOUBLE PRECISION array, dimension (LDA, N) */
- /* On entry, the first of the pair of matrices. */
- /* On exit, A has been overwritten by its generalized Schur */
- /* form S. */
- /* LDA (input) INTEGER */
- /* The leading dimension of A. LDA >= max(1,N). */
- /* B (input/output) DOUBLE PRECISION array, dimension (LDB, N) */
- /* On entry, the second of the pair of matrices. */
- /* On exit, B has been overwritten by its generalized Schur */
- /* form T. */
- /* LDB (input) INTEGER */
- /* The leading dimension of B. LDB >= max(1,N). */
- /* SDIM (output) INTEGER */
- /* If SORT = 'N', SDIM = 0. */
- /* If SORT = 'S', SDIM = number of eigenvalues (after sorting) */
- /* for which SELCTG is true. (Complex conjugate pairs for which */
- /* SELCTG is true for either eigenvalue count as 2.) */
- /* ALPHAR (output) DOUBLE PRECISION array, dimension (N) */
- /* ALPHAI (output) DOUBLE PRECISION array, dimension (N) */
- /* BETA (output) DOUBLE PRECISION array, dimension (N) */
- /* On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */
- /* be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i */
- /* and BETA(j),j=1,...,N are the diagonals of the complex Schur */
- /* form (S,T) that would result if the 2-by-2 diagonal blocks of */
- /* the real Schur form of (A,B) were further reduced to */
- /* triangular form using 2-by-2 complex unitary transformations. */
- /* If ALPHAI(j) is zero, then the j-th eigenvalue is real; if */
- /* positive, then the j-th and (j+1)-st eigenvalues are a */
- /* complex conjugate pair, with ALPHAI(j+1) negative. */
- /* Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) */
- /* may easily over- or underflow, and BETA(j) may even be zero. */
- /* Thus, the user should avoid naively computing the ratio. */
- /* However, ALPHAR and ALPHAI will be always less than and */
- /* usually comparable with norm(A) in magnitude, and BETA always */
- /* less than and usually comparable with norm(B). */
- /* VSL (output) DOUBLE PRECISION array, dimension (LDVSL,N) */
- /* If JOBVSL = 'V', VSL will contain the left Schur vectors. */
- /* Not referenced if JOBVSL = 'N'. */
- /* LDVSL (input) INTEGER */
- /* The leading dimension of the matrix VSL. LDVSL >=1, and */
- /* if JOBVSL = 'V', LDVSL >= N. */
- /* VSR (output) DOUBLE PRECISION array, dimension (LDVSR,N) */
- /* If JOBVSR = 'V', VSR will contain the right Schur vectors. */
- /* Not referenced if JOBVSR = 'N'. */
- /* LDVSR (input) INTEGER */
- /* The leading dimension of the matrix VSR. LDVSR >= 1, and */
- /* if JOBVSR = 'V', LDVSR >= N. */
- /* RCONDE (output) DOUBLE PRECISION array, dimension ( 2 ) */
- /* If SENSE = 'E' or 'B', RCONDE(1) and RCONDE(2) contain the */
- /* reciprocal condition numbers for the average of the selected */
- /* eigenvalues. */
- /* Not referenced if SENSE = 'N' or 'V'. */
- /* RCONDV (output) DOUBLE PRECISION array, dimension ( 2 ) */
- /* If SENSE = 'V' or 'B', RCONDV(1) and RCONDV(2) contain the */
- /* reciprocal condition numbers for the selected deflating */
- /* subspaces. */
- /* Not referenced if SENSE = 'N' or 'E'. */
- /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
- /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* LWORK (input) INTEGER */
- /* The dimension of the array WORK. */
- /* If N = 0, LWORK >= 1, else if SENSE = 'E', 'V', or 'B', */
- /* LWORK >= max( 8*N, 6*N+16, 2*SDIM*(N-SDIM) ), else */
- /* LWORK >= max( 8*N, 6*N+16 ). */
- /* Note that 2*SDIM*(N-SDIM) <= N*N/2. */
- /* Note also that an error is only returned if */
- /* LWORK < max( 8*N, 6*N+16), but if SENSE = 'E' or 'V' or 'B' */
- /* this may not be large enough. */
- /* If LWORK = -1, then a workspace query is assumed; the routine */
- /* only calculates the bound on the optimal size of the WORK */
- /* array and the minimum size of the IWORK array, returns these */
- /* values as the first entries of the WORK and IWORK arrays, and */
- /* no error message related to LWORK or LIWORK is issued by */
- /* XERBLA. */
- /* IWORK (workspace) INTEGER array, dimension (MAX(1,LIWORK)) */
- /* On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK. */
- /* LIWORK (input) INTEGER */
- /* The dimension of the array IWORK. */
- /* If SENSE = 'N' or N = 0, LIWORK >= 1, otherwise */
- /* LIWORK >= N+6. */
- /* If LIWORK = -1, then a workspace query is assumed; the */
- /* routine only calculates the bound on the optimal size of the */
- /* WORK array and the minimum size of the IWORK array, returns */
- /* these values as the first entries of the WORK and IWORK */
- /* arrays, and no error message related to LWORK or LIWORK is */
- /* issued by XERBLA. */
- /* BWORK (workspace) LOGICAL array, dimension (N) */
- /* Not referenced if SORT = 'N'. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* = 1,...,N: */
- /* The QZ iteration failed. (A,B) are not in Schur */
- /* form, but ALPHAR(j), ALPHAI(j), and BETA(j) should */
- /* be correct for j=INFO+1,...,N. */
- /* > N: =N+1: other than QZ iteration failed in DHGEQZ */
- /* =N+2: after reordering, roundoff changed values of */
- /* some complex eigenvalues so that leading */
- /* eigenvalues in the Generalized Schur form no */
- /* longer satisfy SELCTG=.TRUE. This could also */
- /* be caused due to scaling. */
- /* =N+3: reordering failed in DTGSEN. */
- /* Further details */
- /* =============== */
- /* An approximate (asymptotic) bound on the average absolute error of */
- /* the selected eigenvalues is */
- /* EPS * norm((A, B)) / RCONDE( 1 ). */
- /* An approximate (asymptotic) bound on the maximum angular error in */
- /* the computed deflating subspaces is */
- /* EPS * norm((A, B)) / RCONDV( 2 ). */
- /* See LAPACK User's Guide, section 4.11 for more information. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. Local Arrays .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Decode the input arguments */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- --alphar;
- --alphai;
- --beta;
- vsl_dim1 = *ldvsl;
- vsl_offset = 1 + vsl_dim1;
- vsl -= vsl_offset;
- vsr_dim1 = *ldvsr;
- vsr_offset = 1 + vsr_dim1;
- vsr -= vsr_offset;
- --rconde;
- --rcondv;
- --work;
- --iwork;
- --bwork;
- /* Function Body */
- if (_starpu_lsame_(jobvsl, "N")) {
- ijobvl = 1;
- ilvsl = FALSE_;
- } else if (_starpu_lsame_(jobvsl, "V")) {
- ijobvl = 2;
- ilvsl = TRUE_;
- } else {
- ijobvl = -1;
- ilvsl = FALSE_;
- }
- if (_starpu_lsame_(jobvsr, "N")) {
- ijobvr = 1;
- ilvsr = FALSE_;
- } else if (_starpu_lsame_(jobvsr, "V")) {
- ijobvr = 2;
- ilvsr = TRUE_;
- } else {
- ijobvr = -1;
- ilvsr = FALSE_;
- }
- wantst = _starpu_lsame_(sort, "S");
- wantsn = _starpu_lsame_(sense, "N");
- wantse = _starpu_lsame_(sense, "E");
- wantsv = _starpu_lsame_(sense, "V");
- wantsb = _starpu_lsame_(sense, "B");
- lquery = *lwork == -1 || *liwork == -1;
- if (wantsn) {
- ijob = 0;
- } else if (wantse) {
- ijob = 1;
- } else if (wantsv) {
- ijob = 2;
- } else if (wantsb) {
- ijob = 4;
- }
- /* Test the input arguments */
- *info = 0;
- if (ijobvl <= 0) {
- *info = -1;
- } else if (ijobvr <= 0) {
- *info = -2;
- } else if (! wantst && ! _starpu_lsame_(sort, "N")) {
- *info = -3;
- } else if (! (wantsn || wantse || wantsv || wantsb) || ! wantst && !
- wantsn) {
- *info = -5;
- } else if (*n < 0) {
- *info = -6;
- } else if (*lda < max(1,*n)) {
- *info = -8;
- } else if (*ldb < max(1,*n)) {
- *info = -10;
- } else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) {
- *info = -16;
- } else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) {
- *info = -18;
- }
- /* Compute workspace */
- /* (Note: Comments in the code beginning "Workspace:" describe the */
- /* minimal amount of workspace needed at that point in the code, */
- /* as well as the preferred amount for good performance. */
- /* NB refers to the optimal block size for the immediately */
- /* following subroutine, as returned by ILAENV.) */
- if (*info == 0) {
- if (*n > 0) {
- /* Computing MAX */
- i__1 = *n << 3, i__2 = *n * 6 + 16;
- minwrk = max(i__1,i__2);
- maxwrk = minwrk - *n + *n * _starpu_ilaenv_(&c__1, "DGEQRF", " ", n, &
- c__1, n, &c__0);
- /* Computing MAX */
- i__1 = maxwrk, i__2 = minwrk - *n + *n * _starpu_ilaenv_(&c__1, "DORMQR",
- " ", n, &c__1, n, &c_n1);
- maxwrk = max(i__1,i__2);
- if (ilvsl) {
- /* Computing MAX */
- i__1 = maxwrk, i__2 = minwrk - *n + *n * _starpu_ilaenv_(&c__1, "DOR"
- "GQR", " ", n, &c__1, n, &c_n1);
- maxwrk = max(i__1,i__2);
- }
- lwrk = maxwrk;
- if (ijob >= 1) {
- /* Computing MAX */
- i__1 = lwrk, i__2 = *n * *n / 2;
- lwrk = max(i__1,i__2);
- }
- } else {
- minwrk = 1;
- maxwrk = 1;
- lwrk = 1;
- }
- work[1] = (doublereal) lwrk;
- if (wantsn || *n == 0) {
- liwmin = 1;
- } else {
- liwmin = *n + 6;
- }
- iwork[1] = liwmin;
- if (*lwork < minwrk && ! lquery) {
- *info = -22;
- } else if (*liwork < liwmin && ! lquery) {
- *info = -24;
- }
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DGGESX", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0) {
- *sdim = 0;
- return 0;
- }
- /* Get machine constants */
- eps = _starpu_dlamch_("P");
- safmin = _starpu_dlamch_("S");
- safmax = 1. / safmin;
- _starpu_dlabad_(&safmin, &safmax);
- smlnum = sqrt(safmin) / eps;
- bignum = 1. / smlnum;
- /* Scale A if max element outside range [SMLNUM,BIGNUM] */
- anrm = _starpu_dlange_("M", n, n, &a[a_offset], lda, &work[1]);
- ilascl = FALSE_;
- if (anrm > 0. && anrm < smlnum) {
- anrmto = smlnum;
- ilascl = TRUE_;
- } else if (anrm > bignum) {
- anrmto = bignum;
- ilascl = TRUE_;
- }
- if (ilascl) {
- _starpu_dlascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
- ierr);
- }
- /* Scale B if max element outside range [SMLNUM,BIGNUM] */
- bnrm = _starpu_dlange_("M", n, n, &b[b_offset], ldb, &work[1]);
- ilbscl = FALSE_;
- if (bnrm > 0. && bnrm < smlnum) {
- bnrmto = smlnum;
- ilbscl = TRUE_;
- } else if (bnrm > bignum) {
- bnrmto = bignum;
- ilbscl = TRUE_;
- }
- if (ilbscl) {
- _starpu_dlascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
- ierr);
- }
- /* Permute the matrix to make it more nearly triangular */
- /* (Workspace: need 6*N + 2*N for permutation parameters) */
- ileft = 1;
- iright = *n + 1;
- iwrk = iright + *n;
- _starpu_dggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[
- ileft], &work[iright], &work[iwrk], &ierr);
- /* Reduce B to triangular form (QR decomposition of B) */
- /* (Workspace: need N, prefer N*NB) */
- irows = ihi + 1 - ilo;
- icols = *n + 1 - ilo;
- itau = iwrk;
- iwrk = itau + irows;
- i__1 = *lwork + 1 - iwrk;
- _starpu_dgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
- iwrk], &i__1, &ierr);
- /* Apply the orthogonal transformation to matrix A */
- /* (Workspace: need N, prefer N*NB) */
- i__1 = *lwork + 1 - iwrk;
- _starpu_dormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
- work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwrk], &i__1, &
- ierr);
- /* Initialize VSL */
- /* (Workspace: need N, prefer N*NB) */
- if (ilvsl) {
- _starpu_dlaset_("Full", n, n, &c_b42, &c_b43, &vsl[vsl_offset], ldvsl);
- if (irows > 1) {
- i__1 = irows - 1;
- i__2 = irows - 1;
- _starpu_dlacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vsl[
- ilo + 1 + ilo * vsl_dim1], ldvsl);
- }
- i__1 = *lwork + 1 - iwrk;
- _starpu_dorgqr_(&irows, &irows, &irows, &vsl[ilo + ilo * vsl_dim1], ldvsl, &
- work[itau], &work[iwrk], &i__1, &ierr);
- }
- /* Initialize VSR */
- if (ilvsr) {
- _starpu_dlaset_("Full", n, n, &c_b42, &c_b43, &vsr[vsr_offset], ldvsr);
- }
- /* Reduce to generalized Hessenberg form */
- /* (Workspace: none needed) */
- _starpu_dgghrd_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset],
- ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &ierr);
- *sdim = 0;
- /* Perform QZ algorithm, computing Schur vectors if desired */
- /* (Workspace: need N) */
- iwrk = itau;
- i__1 = *lwork + 1 - iwrk;
- _starpu_dhgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[
- b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[vsl_offset]
- , ldvsl, &vsr[vsr_offset], ldvsr, &work[iwrk], &i__1, &ierr);
- if (ierr != 0) {
- if (ierr > 0 && ierr <= *n) {
- *info = ierr;
- } else if (ierr > *n && ierr <= *n << 1) {
- *info = ierr - *n;
- } else {
- *info = *n + 1;
- }
- goto L60;
- }
- /* Sort eigenvalues ALPHA/BETA and compute the reciprocal of */
- /* condition number(s) */
- /* (Workspace: If IJOB >= 1, need MAX( 8*(N+1), 2*SDIM*(N-SDIM) ) */
- /* otherwise, need 8*(N+1) ) */
- if (wantst) {
- /* Undo scaling on eigenvalues before SELCTGing */
- if (ilascl) {
- _starpu_dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1],
- n, &ierr);
- _starpu_dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1],
- n, &ierr);
- }
- if (ilbscl) {
- _starpu_dlascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n,
- &ierr);
- }
- /* Select eigenvalues */
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- bwork[i__] = (*selctg)(&alphar[i__], &alphai[i__], &beta[i__]);
- /* L10: */
- }
- /* Reorder eigenvalues, transform Generalized Schur vectors, and */
- /* compute reciprocal condition numbers */
- i__1 = *lwork - iwrk + 1;
- _starpu_dtgsen_(&ijob, &ilvsl, &ilvsr, &bwork[1], n, &a[a_offset], lda, &b[
- b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[
- vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, sdim, &pl, &pr,
- dif, &work[iwrk], &i__1, &iwork[1], liwork, &ierr);
- if (ijob >= 1) {
- /* Computing MAX */
- i__1 = maxwrk, i__2 = (*sdim << 1) * (*n - *sdim);
- maxwrk = max(i__1,i__2);
- }
- if (ierr == -22) {
- /* not enough real workspace */
- *info = -22;
- } else {
- if (ijob == 1 || ijob == 4) {
- rconde[1] = pl;
- rconde[2] = pr;
- }
- if (ijob == 2 || ijob == 4) {
- rcondv[1] = dif[0];
- rcondv[2] = dif[1];
- }
- if (ierr == 1) {
- *info = *n + 3;
- }
- }
- }
- /* Apply permutation to VSL and VSR */
- /* (Workspace: none needed) */
- if (ilvsl) {
- _starpu_dggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsl[
- vsl_offset], ldvsl, &ierr);
- }
- if (ilvsr) {
- _starpu_dggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsr[
- vsr_offset], ldvsr, &ierr);
- }
- /* Check if unscaling would cause over/underflow, if so, rescale */
- /* (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of */
- /* B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I) */
- if (ilascl) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (alphai[i__] != 0.) {
- if (alphar[i__] / safmax > anrmto / anrm || safmin / alphar[
- i__] > anrm / anrmto) {
- work[1] = (d__1 = a[i__ + i__ * a_dim1] / alphar[i__],
- abs(d__1));
- beta[i__] *= work[1];
- alphar[i__] *= work[1];
- alphai[i__] *= work[1];
- } else if (alphai[i__] / safmax > anrmto / anrm || safmin /
- alphai[i__] > anrm / anrmto) {
- work[1] = (d__1 = a[i__ + (i__ + 1) * a_dim1] / alphai[
- i__], abs(d__1));
- beta[i__] *= work[1];
- alphar[i__] *= work[1];
- alphai[i__] *= work[1];
- }
- }
- /* L20: */
- }
- }
- if (ilbscl) {
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (alphai[i__] != 0.) {
- if (beta[i__] / safmax > bnrmto / bnrm || safmin / beta[i__]
- > bnrm / bnrmto) {
- work[1] = (d__1 = b[i__ + i__ * b_dim1] / beta[i__], abs(
- d__1));
- beta[i__] *= work[1];
- alphar[i__] *= work[1];
- alphai[i__] *= work[1];
- }
- }
- /* L30: */
- }
- }
- /* Undo scaling */
- if (ilascl) {
- _starpu_dlascl_("H", &c__0, &c__0, &anrmto, &anrm, n, n, &a[a_offset], lda, &
- ierr);
- _starpu_dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, &
- ierr);
- _starpu_dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, &
- ierr);
- }
- if (ilbscl) {
- _starpu_dlascl_("U", &c__0, &c__0, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, &
- ierr);
- _starpu_dlascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
- ierr);
- }
- if (wantst) {
- /* Check if reordering is correct */
- lastsl = TRUE_;
- lst2sl = TRUE_;
- *sdim = 0;
- ip = 0;
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- cursl = (*selctg)(&alphar[i__], &alphai[i__], &beta[i__]);
- if (alphai[i__] == 0.) {
- if (cursl) {
- ++(*sdim);
- }
- ip = 0;
- if (cursl && ! lastsl) {
- *info = *n + 2;
- }
- } else {
- if (ip == 1) {
- /* Last eigenvalue of conjugate pair */
- cursl = cursl || lastsl;
- lastsl = cursl;
- if (cursl) {
- *sdim += 2;
- }
- ip = -1;
- if (cursl && ! lst2sl) {
- *info = *n + 2;
- }
- } else {
- /* First eigenvalue of conjugate pair */
- ip = 1;
- }
- }
- lst2sl = lastsl;
- lastsl = cursl;
- /* L50: */
- }
- }
- L60:
- work[1] = (doublereal) maxwrk;
- iwork[1] = liwmin;
- return 0;
- /* End of DGGESX */
- } /* _starpu_dggesx_ */
|