123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194 |
- /* dgetf2.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static doublereal c_b8 = -1.;
- /* Subroutine */ int _starpu_dgetf2_(integer *m, integer *n, doublereal *a, integer *
- lda, integer *ipiv, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3;
- doublereal d__1;
- /* Local variables */
- integer i__, j, jp;
- extern /* Subroutine */ int _starpu_dger_(integer *, integer *, doublereal *,
- doublereal *, integer *, doublereal *, integer *, doublereal *,
- integer *), _starpu_dscal_(integer *, doublereal *, doublereal *, integer
- *);
- doublereal sfmin;
- extern /* Subroutine */ int _starpu_dswap_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- extern doublereal _starpu_dlamch_(char *);
- extern integer _starpu_idamax_(integer *, doublereal *, integer *);
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DGETF2 computes an LU factorization of a general m-by-n matrix A */
- /* using partial pivoting with row interchanges. */
- /* The factorization has the form */
- /* A = P * L * U */
- /* where P is a permutation matrix, L is lower triangular with unit */
- /* diagonal elements (lower trapezoidal if m > n), and U is upper */
- /* triangular (upper trapezoidal if m < n). */
- /* This is the right-looking Level 2 BLAS version of the algorithm. */
- /* Arguments */
- /* ========= */
- /* M (input) INTEGER */
- /* The number of rows of the matrix A. M >= 0. */
- /* N (input) INTEGER */
- /* The number of columns of the matrix A. N >= 0. */
- /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
- /* On entry, the m by n matrix to be factored. */
- /* On exit, the factors L and U from the factorization */
- /* A = P*L*U; the unit diagonal elements of L are not stored. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,M). */
- /* IPIV (output) INTEGER array, dimension (min(M,N)) */
- /* The pivot indices; for 1 <= i <= min(M,N), row i of the */
- /* matrix was interchanged with row IPIV(i). */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -k, the k-th argument had an illegal value */
- /* > 0: if INFO = k, U(k,k) is exactly zero. The factorization */
- /* has been completed, but the factor U is exactly */
- /* singular, and division by zero will occur if it is used */
- /* to solve a system of equations. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- --ipiv;
- /* Function Body */
- *info = 0;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*m)) {
- *info = -4;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DGETF2", &i__1);
- return 0;
- }
- /* Quick return if possible */
- if (*m == 0 || *n == 0) {
- return 0;
- }
- /* Compute machine safe minimum */
- sfmin = _starpu_dlamch_("S");
- i__1 = min(*m,*n);
- for (j = 1; j <= i__1; ++j) {
- /* Find pivot and test for singularity. */
- i__2 = *m - j + 1;
- jp = j - 1 + _starpu_idamax_(&i__2, &a[j + j * a_dim1], &c__1);
- ipiv[j] = jp;
- if (a[jp + j * a_dim1] != 0.) {
- /* Apply the interchange to columns 1:N. */
- if (jp != j) {
- _starpu_dswap_(n, &a[j + a_dim1], lda, &a[jp + a_dim1], lda);
- }
- /* Compute elements J+1:M of J-th column. */
- if (j < *m) {
- if ((d__1 = a[j + j * a_dim1], abs(d__1)) >= sfmin) {
- i__2 = *m - j;
- d__1 = 1. / a[j + j * a_dim1];
- _starpu_dscal_(&i__2, &d__1, &a[j + 1 + j * a_dim1], &c__1);
- } else {
- i__2 = *m - j;
- for (i__ = 1; i__ <= i__2; ++i__) {
- a[j + i__ + j * a_dim1] /= a[j + j * a_dim1];
- /* L20: */
- }
- }
- }
- } else if (*info == 0) {
- *info = j;
- }
- if (j < min(*m,*n)) {
- /* Update trailing submatrix. */
- i__2 = *m - j;
- i__3 = *n - j;
- _starpu_dger_(&i__2, &i__3, &c_b8, &a[j + 1 + j * a_dim1], &c__1, &a[j + (
- j + 1) * a_dim1], lda, &a[j + 1 + (j + 1) * a_dim1], lda);
- }
- /* L10: */
- }
- return 0;
- /* End of DGETF2 */
- } /* _starpu_dgetf2_ */
|