dgesdd.c 53 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610
  1. /* dgesdd.f -- translated by f2c (version 20061008).
  2. You must link the resulting object file with libf2c:
  3. on Microsoft Windows system, link with libf2c.lib;
  4. on Linux or Unix systems, link with .../path/to/libf2c.a -lm
  5. or, if you install libf2c.a in a standard place, with -lf2c -lm
  6. -- in that order, at the end of the command line, as in
  7. cc *.o -lf2c -lm
  8. Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
  9. http://www.netlib.org/f2c/libf2c.zip
  10. */
  11. #include "f2c.h"
  12. #include "blaswrap.h"
  13. /* Table of constant values */
  14. static integer c__1 = 1;
  15. static integer c_n1 = -1;
  16. static integer c__0 = 0;
  17. static doublereal c_b227 = 0.;
  18. static doublereal c_b248 = 1.;
  19. /* Subroutine */ int _starpu_dgesdd_(char *jobz, integer *m, integer *n, doublereal *
  20. a, integer *lda, doublereal *s, doublereal *u, integer *ldu,
  21. doublereal *vt, integer *ldvt, doublereal *work, integer *lwork,
  22. integer *iwork, integer *info)
  23. {
  24. /* System generated locals */
  25. integer a_dim1, a_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1,
  26. i__2, i__3;
  27. /* Builtin functions */
  28. double sqrt(doublereal);
  29. /* Local variables */
  30. integer i__, ie, il, ir, iu, blk;
  31. doublereal dum[1], eps;
  32. integer ivt, iscl;
  33. doublereal anrm;
  34. integer idum[1], ierr, itau;
  35. extern /* Subroutine */ int _starpu_dgemm_(char *, char *, integer *, integer *,
  36. integer *, doublereal *, doublereal *, integer *, doublereal *,
  37. integer *, doublereal *, doublereal *, integer *);
  38. extern logical _starpu_lsame_(char *, char *);
  39. integer chunk, minmn, wrkbl, itaup, itauq, mnthr;
  40. logical wntqa;
  41. integer nwork;
  42. logical wntqn, wntqo, wntqs;
  43. extern /* Subroutine */ int _starpu_dbdsdc_(char *, char *, integer *, doublereal
  44. *, doublereal *, doublereal *, integer *, doublereal *, integer *,
  45. doublereal *, integer *, doublereal *, integer *, integer *), _starpu_dgebrd_(integer *, integer *, doublereal *,
  46. integer *, doublereal *, doublereal *, doublereal *, doublereal *,
  47. doublereal *, integer *, integer *);
  48. extern doublereal _starpu_dlamch_(char *), _starpu_dlange_(char *, integer *,
  49. integer *, doublereal *, integer *, doublereal *);
  50. integer bdspac;
  51. extern /* Subroutine */ int _starpu_dgelqf_(integer *, integer *, doublereal *,
  52. integer *, doublereal *, doublereal *, integer *, integer *),
  53. _starpu_dlascl_(char *, integer *, integer *, doublereal *, doublereal *,
  54. integer *, integer *, doublereal *, integer *, integer *),
  55. _starpu_dgeqrf_(integer *, integer *, doublereal *, integer *,
  56. doublereal *, doublereal *, integer *, integer *), _starpu_dlacpy_(char *,
  57. integer *, integer *, doublereal *, integer *, doublereal *,
  58. integer *), _starpu_dlaset_(char *, integer *, integer *,
  59. doublereal *, doublereal *, doublereal *, integer *),
  60. _starpu_xerbla_(char *, integer *), _starpu_dorgbr_(char *, integer *,
  61. integer *, integer *, doublereal *, integer *, doublereal *,
  62. doublereal *, integer *, integer *);
  63. extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *,
  64. integer *, integer *);
  65. doublereal bignum;
  66. extern /* Subroutine */ int _starpu_dormbr_(char *, char *, char *, integer *,
  67. integer *, integer *, doublereal *, integer *, doublereal *,
  68. doublereal *, integer *, doublereal *, integer *, integer *), _starpu_dorglq_(integer *, integer *, integer *,
  69. doublereal *, integer *, doublereal *, doublereal *, integer *,
  70. integer *), _starpu_dorgqr_(integer *, integer *, integer *, doublereal *,
  71. integer *, doublereal *, doublereal *, integer *, integer *);
  72. integer ldwrkl, ldwrkr, minwrk, ldwrku, maxwrk, ldwkvt;
  73. doublereal smlnum;
  74. logical wntqas, lquery;
  75. /* -- LAPACK driver routine (version 3.2.1) -- */
  76. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  77. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  78. /* March 2009 */
  79. /* .. Scalar Arguments .. */
  80. /* .. */
  81. /* .. Array Arguments .. */
  82. /* .. */
  83. /* Purpose */
  84. /* ======= */
  85. /* DGESDD computes the singular value decomposition (SVD) of a real */
  86. /* M-by-N matrix A, optionally computing the left and right singular */
  87. /* vectors. If singular vectors are desired, it uses a */
  88. /* divide-and-conquer algorithm. */
  89. /* The SVD is written */
  90. /* A = U * SIGMA * transpose(V) */
  91. /* where SIGMA is an M-by-N matrix which is zero except for its */
  92. /* min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and */
  93. /* V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA */
  94. /* are the singular values of A; they are real and non-negative, and */
  95. /* are returned in descending order. The first min(m,n) columns of */
  96. /* U and V are the left and right singular vectors of A. */
  97. /* Note that the routine returns VT = V**T, not V. */
  98. /* The divide and conquer algorithm makes very mild assumptions about */
  99. /* floating point arithmetic. It will work on machines with a guard */
  100. /* digit in add/subtract, or on those binary machines without guard */
  101. /* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
  102. /* Cray-2. It could conceivably fail on hexadecimal or decimal machines */
  103. /* without guard digits, but we know of none. */
  104. /* Arguments */
  105. /* ========= */
  106. /* JOBZ (input) CHARACTER*1 */
  107. /* Specifies options for computing all or part of the matrix U: */
  108. /* = 'A': all M columns of U and all N rows of V**T are */
  109. /* returned in the arrays U and VT; */
  110. /* = 'S': the first min(M,N) columns of U and the first */
  111. /* min(M,N) rows of V**T are returned in the arrays U */
  112. /* and VT; */
  113. /* = 'O': If M >= N, the first N columns of U are overwritten */
  114. /* on the array A and all rows of V**T are returned in */
  115. /* the array VT; */
  116. /* otherwise, all columns of U are returned in the */
  117. /* array U and the first M rows of V**T are overwritten */
  118. /* in the array A; */
  119. /* = 'N': no columns of U or rows of V**T are computed. */
  120. /* M (input) INTEGER */
  121. /* The number of rows of the input matrix A. M >= 0. */
  122. /* N (input) INTEGER */
  123. /* The number of columns of the input matrix A. N >= 0. */
  124. /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
  125. /* On entry, the M-by-N matrix A. */
  126. /* On exit, */
  127. /* if JOBZ = 'O', A is overwritten with the first N columns */
  128. /* of U (the left singular vectors, stored */
  129. /* columnwise) if M >= N; */
  130. /* A is overwritten with the first M rows */
  131. /* of V**T (the right singular vectors, stored */
  132. /* rowwise) otherwise. */
  133. /* if JOBZ .ne. 'O', the contents of A are destroyed. */
  134. /* LDA (input) INTEGER */
  135. /* The leading dimension of the array A. LDA >= max(1,M). */
  136. /* S (output) DOUBLE PRECISION array, dimension (min(M,N)) */
  137. /* The singular values of A, sorted so that S(i) >= S(i+1). */
  138. /* U (output) DOUBLE PRECISION array, dimension (LDU,UCOL) */
  139. /* UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N; */
  140. /* UCOL = min(M,N) if JOBZ = 'S'. */
  141. /* If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M */
  142. /* orthogonal matrix U; */
  143. /* if JOBZ = 'S', U contains the first min(M,N) columns of U */
  144. /* (the left singular vectors, stored columnwise); */
  145. /* if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced. */
  146. /* LDU (input) INTEGER */
  147. /* The leading dimension of the array U. LDU >= 1; if */
  148. /* JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M. */
  149. /* VT (output) DOUBLE PRECISION array, dimension (LDVT,N) */
  150. /* If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT contains the */
  151. /* N-by-N orthogonal matrix V**T; */
  152. /* if JOBZ = 'S', VT contains the first min(M,N) rows of */
  153. /* V**T (the right singular vectors, stored rowwise); */
  154. /* if JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not referenced. */
  155. /* LDVT (input) INTEGER */
  156. /* The leading dimension of the array VT. LDVT >= 1; if */
  157. /* JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N; */
  158. /* if JOBZ = 'S', LDVT >= min(M,N). */
  159. /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
  160. /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK; */
  161. /* LWORK (input) INTEGER */
  162. /* The dimension of the array WORK. LWORK >= 1. */
  163. /* If JOBZ = 'N', */
  164. /* LWORK >= 3*min(M,N) + max(max(M,N),7*min(M,N)). */
  165. /* If JOBZ = 'O', */
  166. /* LWORK >= 3*min(M,N) + */
  167. /* max(max(M,N),5*min(M,N)*min(M,N)+4*min(M,N)). */
  168. /* If JOBZ = 'S' or 'A' */
  169. /* LWORK >= 3*min(M,N) + */
  170. /* max(max(M,N),4*min(M,N)*min(M,N)+4*min(M,N)). */
  171. /* For good performance, LWORK should generally be larger. */
  172. /* If LWORK = -1 but other input arguments are legal, WORK(1) */
  173. /* returns the optimal LWORK. */
  174. /* IWORK (workspace) INTEGER array, dimension (8*min(M,N)) */
  175. /* INFO (output) INTEGER */
  176. /* = 0: successful exit. */
  177. /* < 0: if INFO = -i, the i-th argument had an illegal value. */
  178. /* > 0: DBDSDC did not converge, updating process failed. */
  179. /* Further Details */
  180. /* =============== */
  181. /* Based on contributions by */
  182. /* Ming Gu and Huan Ren, Computer Science Division, University of */
  183. /* California at Berkeley, USA */
  184. /* ===================================================================== */
  185. /* .. Parameters .. */
  186. /* .. */
  187. /* .. Local Scalars .. */
  188. /* .. */
  189. /* .. Local Arrays .. */
  190. /* .. */
  191. /* .. External Subroutines .. */
  192. /* .. */
  193. /* .. External Functions .. */
  194. /* .. */
  195. /* .. Intrinsic Functions .. */
  196. /* .. */
  197. /* .. Executable Statements .. */
  198. /* Test the input arguments */
  199. /* Parameter adjustments */
  200. a_dim1 = *lda;
  201. a_offset = 1 + a_dim1;
  202. a -= a_offset;
  203. --s;
  204. u_dim1 = *ldu;
  205. u_offset = 1 + u_dim1;
  206. u -= u_offset;
  207. vt_dim1 = *ldvt;
  208. vt_offset = 1 + vt_dim1;
  209. vt -= vt_offset;
  210. --work;
  211. --iwork;
  212. /* Function Body */
  213. *info = 0;
  214. minmn = min(*m,*n);
  215. wntqa = _starpu_lsame_(jobz, "A");
  216. wntqs = _starpu_lsame_(jobz, "S");
  217. wntqas = wntqa || wntqs;
  218. wntqo = _starpu_lsame_(jobz, "O");
  219. wntqn = _starpu_lsame_(jobz, "N");
  220. lquery = *lwork == -1;
  221. if (! (wntqa || wntqs || wntqo || wntqn)) {
  222. *info = -1;
  223. } else if (*m < 0) {
  224. *info = -2;
  225. } else if (*n < 0) {
  226. *info = -3;
  227. } else if (*lda < max(1,*m)) {
  228. *info = -5;
  229. } else if (*ldu < 1 || wntqas && *ldu < *m || wntqo && *m < *n && *ldu < *
  230. m) {
  231. *info = -8;
  232. } else if (*ldvt < 1 || wntqa && *ldvt < *n || wntqs && *ldvt < minmn ||
  233. wntqo && *m >= *n && *ldvt < *n) {
  234. *info = -10;
  235. }
  236. /* Compute workspace */
  237. /* (Note: Comments in the code beginning "Workspace:" describe the */
  238. /* minimal amount of workspace needed at that point in the code, */
  239. /* as well as the preferred amount for good performance. */
  240. /* NB refers to the optimal block size for the immediately */
  241. /* following subroutine, as returned by ILAENV.) */
  242. if (*info == 0) {
  243. minwrk = 1;
  244. maxwrk = 1;
  245. if (*m >= *n && minmn > 0) {
  246. /* Compute space needed for DBDSDC */
  247. mnthr = (integer) (minmn * 11. / 6.);
  248. if (wntqn) {
  249. bdspac = *n * 7;
  250. } else {
  251. bdspac = *n * 3 * *n + (*n << 2);
  252. }
  253. if (*m >= mnthr) {
  254. if (wntqn) {
  255. /* Path 1 (M much larger than N, JOBZ='N') */
  256. wrkbl = *n + *n * _starpu_ilaenv_(&c__1, "DGEQRF", " ", m, n, &
  257. c_n1, &c_n1);
  258. /* Computing MAX */
  259. i__1 = wrkbl, i__2 = *n * 3 + (*n << 1) * _starpu_ilaenv_(&c__1,
  260. "DGEBRD", " ", n, n, &c_n1, &c_n1);
  261. wrkbl = max(i__1,i__2);
  262. /* Computing MAX */
  263. i__1 = wrkbl, i__2 = bdspac + *n;
  264. maxwrk = max(i__1,i__2);
  265. minwrk = bdspac + *n;
  266. } else if (wntqo) {
  267. /* Path 2 (M much larger than N, JOBZ='O') */
  268. wrkbl = *n + *n * _starpu_ilaenv_(&c__1, "DGEQRF", " ", m, n, &
  269. c_n1, &c_n1);
  270. /* Computing MAX */
  271. i__1 = wrkbl, i__2 = *n + *n * _starpu_ilaenv_(&c__1, "DORGQR",
  272. " ", m, n, n, &c_n1);
  273. wrkbl = max(i__1,i__2);
  274. /* Computing MAX */
  275. i__1 = wrkbl, i__2 = *n * 3 + (*n << 1) * _starpu_ilaenv_(&c__1,
  276. "DGEBRD", " ", n, n, &c_n1, &c_n1);
  277. wrkbl = max(i__1,i__2);
  278. /* Computing MAX */
  279. i__1 = wrkbl, i__2 = *n * 3 + *n * _starpu_ilaenv_(&c__1, "DORMBR"
  280. , "QLN", n, n, n, &c_n1);
  281. wrkbl = max(i__1,i__2);
  282. /* Computing MAX */
  283. i__1 = wrkbl, i__2 = *n * 3 + *n * _starpu_ilaenv_(&c__1, "DORMBR"
  284. , "PRT", n, n, n, &c_n1);
  285. wrkbl = max(i__1,i__2);
  286. /* Computing MAX */
  287. i__1 = wrkbl, i__2 = bdspac + *n * 3;
  288. wrkbl = max(i__1,i__2);
  289. maxwrk = wrkbl + (*n << 1) * *n;
  290. minwrk = bdspac + (*n << 1) * *n + *n * 3;
  291. } else if (wntqs) {
  292. /* Path 3 (M much larger than N, JOBZ='S') */
  293. wrkbl = *n + *n * _starpu_ilaenv_(&c__1, "DGEQRF", " ", m, n, &
  294. c_n1, &c_n1);
  295. /* Computing MAX */
  296. i__1 = wrkbl, i__2 = *n + *n * _starpu_ilaenv_(&c__1, "DORGQR",
  297. " ", m, n, n, &c_n1);
  298. wrkbl = max(i__1,i__2);
  299. /* Computing MAX */
  300. i__1 = wrkbl, i__2 = *n * 3 + (*n << 1) * _starpu_ilaenv_(&c__1,
  301. "DGEBRD", " ", n, n, &c_n1, &c_n1);
  302. wrkbl = max(i__1,i__2);
  303. /* Computing MAX */
  304. i__1 = wrkbl, i__2 = *n * 3 + *n * _starpu_ilaenv_(&c__1, "DORMBR"
  305. , "QLN", n, n, n, &c_n1);
  306. wrkbl = max(i__1,i__2);
  307. /* Computing MAX */
  308. i__1 = wrkbl, i__2 = *n * 3 + *n * _starpu_ilaenv_(&c__1, "DORMBR"
  309. , "PRT", n, n, n, &c_n1);
  310. wrkbl = max(i__1,i__2);
  311. /* Computing MAX */
  312. i__1 = wrkbl, i__2 = bdspac + *n * 3;
  313. wrkbl = max(i__1,i__2);
  314. maxwrk = wrkbl + *n * *n;
  315. minwrk = bdspac + *n * *n + *n * 3;
  316. } else if (wntqa) {
  317. /* Path 4 (M much larger than N, JOBZ='A') */
  318. wrkbl = *n + *n * _starpu_ilaenv_(&c__1, "DGEQRF", " ", m, n, &
  319. c_n1, &c_n1);
  320. /* Computing MAX */
  321. i__1 = wrkbl, i__2 = *n + *m * _starpu_ilaenv_(&c__1, "DORGQR",
  322. " ", m, m, n, &c_n1);
  323. wrkbl = max(i__1,i__2);
  324. /* Computing MAX */
  325. i__1 = wrkbl, i__2 = *n * 3 + (*n << 1) * _starpu_ilaenv_(&c__1,
  326. "DGEBRD", " ", n, n, &c_n1, &c_n1);
  327. wrkbl = max(i__1,i__2);
  328. /* Computing MAX */
  329. i__1 = wrkbl, i__2 = *n * 3 + *n * _starpu_ilaenv_(&c__1, "DORMBR"
  330. , "QLN", n, n, n, &c_n1);
  331. wrkbl = max(i__1,i__2);
  332. /* Computing MAX */
  333. i__1 = wrkbl, i__2 = *n * 3 + *n * _starpu_ilaenv_(&c__1, "DORMBR"
  334. , "PRT", n, n, n, &c_n1);
  335. wrkbl = max(i__1,i__2);
  336. /* Computing MAX */
  337. i__1 = wrkbl, i__2 = bdspac + *n * 3;
  338. wrkbl = max(i__1,i__2);
  339. maxwrk = wrkbl + *n * *n;
  340. minwrk = bdspac + *n * *n + *n * 3;
  341. }
  342. } else {
  343. /* Path 5 (M at least N, but not much larger) */
  344. wrkbl = *n * 3 + (*m + *n) * _starpu_ilaenv_(&c__1, "DGEBRD", " ", m,
  345. n, &c_n1, &c_n1);
  346. if (wntqn) {
  347. /* Computing MAX */
  348. i__1 = wrkbl, i__2 = bdspac + *n * 3;
  349. maxwrk = max(i__1,i__2);
  350. minwrk = *n * 3 + max(*m,bdspac);
  351. } else if (wntqo) {
  352. /* Computing MAX */
  353. i__1 = wrkbl, i__2 = *n * 3 + *n * _starpu_ilaenv_(&c__1, "DORMBR"
  354. , "QLN", m, n, n, &c_n1);
  355. wrkbl = max(i__1,i__2);
  356. /* Computing MAX */
  357. i__1 = wrkbl, i__2 = *n * 3 + *n * _starpu_ilaenv_(&c__1, "DORMBR"
  358. , "PRT", n, n, n, &c_n1);
  359. wrkbl = max(i__1,i__2);
  360. /* Computing MAX */
  361. i__1 = wrkbl, i__2 = bdspac + *n * 3;
  362. wrkbl = max(i__1,i__2);
  363. maxwrk = wrkbl + *m * *n;
  364. /* Computing MAX */
  365. i__1 = *m, i__2 = *n * *n + bdspac;
  366. minwrk = *n * 3 + max(i__1,i__2);
  367. } else if (wntqs) {
  368. /* Computing MAX */
  369. i__1 = wrkbl, i__2 = *n * 3 + *n * _starpu_ilaenv_(&c__1, "DORMBR"
  370. , "QLN", m, n, n, &c_n1);
  371. wrkbl = max(i__1,i__2);
  372. /* Computing MAX */
  373. i__1 = wrkbl, i__2 = *n * 3 + *n * _starpu_ilaenv_(&c__1, "DORMBR"
  374. , "PRT", n, n, n, &c_n1);
  375. wrkbl = max(i__1,i__2);
  376. /* Computing MAX */
  377. i__1 = wrkbl, i__2 = bdspac + *n * 3;
  378. maxwrk = max(i__1,i__2);
  379. minwrk = *n * 3 + max(*m,bdspac);
  380. } else if (wntqa) {
  381. /* Computing MAX */
  382. i__1 = wrkbl, i__2 = *n * 3 + *m * _starpu_ilaenv_(&c__1, "DORMBR"
  383. , "QLN", m, m, n, &c_n1);
  384. wrkbl = max(i__1,i__2);
  385. /* Computing MAX */
  386. i__1 = wrkbl, i__2 = *n * 3 + *n * _starpu_ilaenv_(&c__1, "DORMBR"
  387. , "PRT", n, n, n, &c_n1);
  388. wrkbl = max(i__1,i__2);
  389. /* Computing MAX */
  390. i__1 = maxwrk, i__2 = bdspac + *n * 3;
  391. maxwrk = max(i__1,i__2);
  392. minwrk = *n * 3 + max(*m,bdspac);
  393. }
  394. }
  395. } else if (minmn > 0) {
  396. /* Compute space needed for DBDSDC */
  397. mnthr = (integer) (minmn * 11. / 6.);
  398. if (wntqn) {
  399. bdspac = *m * 7;
  400. } else {
  401. bdspac = *m * 3 * *m + (*m << 2);
  402. }
  403. if (*n >= mnthr) {
  404. if (wntqn) {
  405. /* Path 1t (N much larger than M, JOBZ='N') */
  406. wrkbl = *m + *m * _starpu_ilaenv_(&c__1, "DGELQF", " ", m, n, &
  407. c_n1, &c_n1);
  408. /* Computing MAX */
  409. i__1 = wrkbl, i__2 = *m * 3 + (*m << 1) * _starpu_ilaenv_(&c__1,
  410. "DGEBRD", " ", m, m, &c_n1, &c_n1);
  411. wrkbl = max(i__1,i__2);
  412. /* Computing MAX */
  413. i__1 = wrkbl, i__2 = bdspac + *m;
  414. maxwrk = max(i__1,i__2);
  415. minwrk = bdspac + *m;
  416. } else if (wntqo) {
  417. /* Path 2t (N much larger than M, JOBZ='O') */
  418. wrkbl = *m + *m * _starpu_ilaenv_(&c__1, "DGELQF", " ", m, n, &
  419. c_n1, &c_n1);
  420. /* Computing MAX */
  421. i__1 = wrkbl, i__2 = *m + *m * _starpu_ilaenv_(&c__1, "DORGLQ",
  422. " ", m, n, m, &c_n1);
  423. wrkbl = max(i__1,i__2);
  424. /* Computing MAX */
  425. i__1 = wrkbl, i__2 = *m * 3 + (*m << 1) * _starpu_ilaenv_(&c__1,
  426. "DGEBRD", " ", m, m, &c_n1, &c_n1);
  427. wrkbl = max(i__1,i__2);
  428. /* Computing MAX */
  429. i__1 = wrkbl, i__2 = *m * 3 + *m * _starpu_ilaenv_(&c__1, "DORMBR"
  430. , "QLN", m, m, m, &c_n1);
  431. wrkbl = max(i__1,i__2);
  432. /* Computing MAX */
  433. i__1 = wrkbl, i__2 = *m * 3 + *m * _starpu_ilaenv_(&c__1, "DORMBR"
  434. , "PRT", m, m, m, &c_n1);
  435. wrkbl = max(i__1,i__2);
  436. /* Computing MAX */
  437. i__1 = wrkbl, i__2 = bdspac + *m * 3;
  438. wrkbl = max(i__1,i__2);
  439. maxwrk = wrkbl + (*m << 1) * *m;
  440. minwrk = bdspac + (*m << 1) * *m + *m * 3;
  441. } else if (wntqs) {
  442. /* Path 3t (N much larger than M, JOBZ='S') */
  443. wrkbl = *m + *m * _starpu_ilaenv_(&c__1, "DGELQF", " ", m, n, &
  444. c_n1, &c_n1);
  445. /* Computing MAX */
  446. i__1 = wrkbl, i__2 = *m + *m * _starpu_ilaenv_(&c__1, "DORGLQ",
  447. " ", m, n, m, &c_n1);
  448. wrkbl = max(i__1,i__2);
  449. /* Computing MAX */
  450. i__1 = wrkbl, i__2 = *m * 3 + (*m << 1) * _starpu_ilaenv_(&c__1,
  451. "DGEBRD", " ", m, m, &c_n1, &c_n1);
  452. wrkbl = max(i__1,i__2);
  453. /* Computing MAX */
  454. i__1 = wrkbl, i__2 = *m * 3 + *m * _starpu_ilaenv_(&c__1, "DORMBR"
  455. , "QLN", m, m, m, &c_n1);
  456. wrkbl = max(i__1,i__2);
  457. /* Computing MAX */
  458. i__1 = wrkbl, i__2 = *m * 3 + *m * _starpu_ilaenv_(&c__1, "DORMBR"
  459. , "PRT", m, m, m, &c_n1);
  460. wrkbl = max(i__1,i__2);
  461. /* Computing MAX */
  462. i__1 = wrkbl, i__2 = bdspac + *m * 3;
  463. wrkbl = max(i__1,i__2);
  464. maxwrk = wrkbl + *m * *m;
  465. minwrk = bdspac + *m * *m + *m * 3;
  466. } else if (wntqa) {
  467. /* Path 4t (N much larger than M, JOBZ='A') */
  468. wrkbl = *m + *m * _starpu_ilaenv_(&c__1, "DGELQF", " ", m, n, &
  469. c_n1, &c_n1);
  470. /* Computing MAX */
  471. i__1 = wrkbl, i__2 = *m + *n * _starpu_ilaenv_(&c__1, "DORGLQ",
  472. " ", n, n, m, &c_n1);
  473. wrkbl = max(i__1,i__2);
  474. /* Computing MAX */
  475. i__1 = wrkbl, i__2 = *m * 3 + (*m << 1) * _starpu_ilaenv_(&c__1,
  476. "DGEBRD", " ", m, m, &c_n1, &c_n1);
  477. wrkbl = max(i__1,i__2);
  478. /* Computing MAX */
  479. i__1 = wrkbl, i__2 = *m * 3 + *m * _starpu_ilaenv_(&c__1, "DORMBR"
  480. , "QLN", m, m, m, &c_n1);
  481. wrkbl = max(i__1,i__2);
  482. /* Computing MAX */
  483. i__1 = wrkbl, i__2 = *m * 3 + *m * _starpu_ilaenv_(&c__1, "DORMBR"
  484. , "PRT", m, m, m, &c_n1);
  485. wrkbl = max(i__1,i__2);
  486. /* Computing MAX */
  487. i__1 = wrkbl, i__2 = bdspac + *m * 3;
  488. wrkbl = max(i__1,i__2);
  489. maxwrk = wrkbl + *m * *m;
  490. minwrk = bdspac + *m * *m + *m * 3;
  491. }
  492. } else {
  493. /* Path 5t (N greater than M, but not much larger) */
  494. wrkbl = *m * 3 + (*m + *n) * _starpu_ilaenv_(&c__1, "DGEBRD", " ", m,
  495. n, &c_n1, &c_n1);
  496. if (wntqn) {
  497. /* Computing MAX */
  498. i__1 = wrkbl, i__2 = bdspac + *m * 3;
  499. maxwrk = max(i__1,i__2);
  500. minwrk = *m * 3 + max(*n,bdspac);
  501. } else if (wntqo) {
  502. /* Computing MAX */
  503. i__1 = wrkbl, i__2 = *m * 3 + *m * _starpu_ilaenv_(&c__1, "DORMBR"
  504. , "QLN", m, m, n, &c_n1);
  505. wrkbl = max(i__1,i__2);
  506. /* Computing MAX */
  507. i__1 = wrkbl, i__2 = *m * 3 + *m * _starpu_ilaenv_(&c__1, "DORMBR"
  508. , "PRT", m, n, m, &c_n1);
  509. wrkbl = max(i__1,i__2);
  510. /* Computing MAX */
  511. i__1 = wrkbl, i__2 = bdspac + *m * 3;
  512. wrkbl = max(i__1,i__2);
  513. maxwrk = wrkbl + *m * *n;
  514. /* Computing MAX */
  515. i__1 = *n, i__2 = *m * *m + bdspac;
  516. minwrk = *m * 3 + max(i__1,i__2);
  517. } else if (wntqs) {
  518. /* Computing MAX */
  519. i__1 = wrkbl, i__2 = *m * 3 + *m * _starpu_ilaenv_(&c__1, "DORMBR"
  520. , "QLN", m, m, n, &c_n1);
  521. wrkbl = max(i__1,i__2);
  522. /* Computing MAX */
  523. i__1 = wrkbl, i__2 = *m * 3 + *m * _starpu_ilaenv_(&c__1, "DORMBR"
  524. , "PRT", m, n, m, &c_n1);
  525. wrkbl = max(i__1,i__2);
  526. /* Computing MAX */
  527. i__1 = wrkbl, i__2 = bdspac + *m * 3;
  528. maxwrk = max(i__1,i__2);
  529. minwrk = *m * 3 + max(*n,bdspac);
  530. } else if (wntqa) {
  531. /* Computing MAX */
  532. i__1 = wrkbl, i__2 = *m * 3 + *m * _starpu_ilaenv_(&c__1, "DORMBR"
  533. , "QLN", m, m, n, &c_n1);
  534. wrkbl = max(i__1,i__2);
  535. /* Computing MAX */
  536. i__1 = wrkbl, i__2 = *m * 3 + *m * _starpu_ilaenv_(&c__1, "DORMBR"
  537. , "PRT", n, n, m, &c_n1);
  538. wrkbl = max(i__1,i__2);
  539. /* Computing MAX */
  540. i__1 = wrkbl, i__2 = bdspac + *m * 3;
  541. maxwrk = max(i__1,i__2);
  542. minwrk = *m * 3 + max(*n,bdspac);
  543. }
  544. }
  545. }
  546. maxwrk = max(maxwrk,minwrk);
  547. work[1] = (doublereal) maxwrk;
  548. if (*lwork < minwrk && ! lquery) {
  549. *info = -12;
  550. }
  551. }
  552. if (*info != 0) {
  553. i__1 = -(*info);
  554. _starpu_xerbla_("DGESDD", &i__1);
  555. return 0;
  556. } else if (lquery) {
  557. return 0;
  558. }
  559. /* Quick return if possible */
  560. if (*m == 0 || *n == 0) {
  561. return 0;
  562. }
  563. /* Get machine constants */
  564. eps = _starpu_dlamch_("P");
  565. smlnum = sqrt(_starpu_dlamch_("S")) / eps;
  566. bignum = 1. / smlnum;
  567. /* Scale A if max element outside range [SMLNUM,BIGNUM] */
  568. anrm = _starpu_dlange_("M", m, n, &a[a_offset], lda, dum);
  569. iscl = 0;
  570. if (anrm > 0. && anrm < smlnum) {
  571. iscl = 1;
  572. _starpu_dlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, &
  573. ierr);
  574. } else if (anrm > bignum) {
  575. iscl = 1;
  576. _starpu_dlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, &
  577. ierr);
  578. }
  579. if (*m >= *n) {
  580. /* A has at least as many rows as columns. If A has sufficiently */
  581. /* more rows than columns, first reduce using the QR */
  582. /* decomposition (if sufficient workspace available) */
  583. if (*m >= mnthr) {
  584. if (wntqn) {
  585. /* Path 1 (M much larger than N, JOBZ='N') */
  586. /* No singular vectors to be computed */
  587. itau = 1;
  588. nwork = itau + *n;
  589. /* Compute A=Q*R */
  590. /* (Workspace: need 2*N, prefer N+N*NB) */
  591. i__1 = *lwork - nwork + 1;
  592. _starpu_dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  593. i__1, &ierr);
  594. /* Zero out below R */
  595. i__1 = *n - 1;
  596. i__2 = *n - 1;
  597. _starpu_dlaset_("L", &i__1, &i__2, &c_b227, &c_b227, &a[a_dim1 + 2],
  598. lda);
  599. ie = 1;
  600. itauq = ie + *n;
  601. itaup = itauq + *n;
  602. nwork = itaup + *n;
  603. /* Bidiagonalize R in A */
  604. /* (Workspace: need 4*N, prefer 3*N+2*N*NB) */
  605. i__1 = *lwork - nwork + 1;
  606. _starpu_dgebrd_(n, n, &a[a_offset], lda, &s[1], &work[ie], &work[
  607. itauq], &work[itaup], &work[nwork], &i__1, &ierr);
  608. nwork = ie + *n;
  609. /* Perform bidiagonal SVD, computing singular values only */
  610. /* (Workspace: need N+BDSPAC) */
  611. _starpu_dbdsdc_("U", "N", n, &s[1], &work[ie], dum, &c__1, dum, &c__1,
  612. dum, idum, &work[nwork], &iwork[1], info);
  613. } else if (wntqo) {
  614. /* Path 2 (M much larger than N, JOBZ = 'O') */
  615. /* N left singular vectors to be overwritten on A and */
  616. /* N right singular vectors to be computed in VT */
  617. ir = 1;
  618. /* WORK(IR) is LDWRKR by N */
  619. if (*lwork >= *lda * *n + *n * *n + *n * 3 + bdspac) {
  620. ldwrkr = *lda;
  621. } else {
  622. ldwrkr = (*lwork - *n * *n - *n * 3 - bdspac) / *n;
  623. }
  624. itau = ir + ldwrkr * *n;
  625. nwork = itau + *n;
  626. /* Compute A=Q*R */
  627. /* (Workspace: need N*N+2*N, prefer N*N+N+N*NB) */
  628. i__1 = *lwork - nwork + 1;
  629. _starpu_dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  630. i__1, &ierr);
  631. /* Copy R to WORK(IR), zeroing out below it */
  632. _starpu_dlacpy_("U", n, n, &a[a_offset], lda, &work[ir], &ldwrkr);
  633. i__1 = *n - 1;
  634. i__2 = *n - 1;
  635. _starpu_dlaset_("L", &i__1, &i__2, &c_b227, &c_b227, &work[ir + 1], &
  636. ldwrkr);
  637. /* Generate Q in A */
  638. /* (Workspace: need N*N+2*N, prefer N*N+N+N*NB) */
  639. i__1 = *lwork - nwork + 1;
  640. _starpu_dorgqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[nwork],
  641. &i__1, &ierr);
  642. ie = itau;
  643. itauq = ie + *n;
  644. itaup = itauq + *n;
  645. nwork = itaup + *n;
  646. /* Bidiagonalize R in VT, copying result to WORK(IR) */
  647. /* (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB) */
  648. i__1 = *lwork - nwork + 1;
  649. _starpu_dgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &work[ie], &work[
  650. itauq], &work[itaup], &work[nwork], &i__1, &ierr);
  651. /* WORK(IU) is N by N */
  652. iu = nwork;
  653. nwork = iu + *n * *n;
  654. /* Perform bidiagonal SVD, computing left singular vectors */
  655. /* of bidiagonal matrix in WORK(IU) and computing right */
  656. /* singular vectors of bidiagonal matrix in VT */
  657. /* (Workspace: need N+N*N+BDSPAC) */
  658. _starpu_dbdsdc_("U", "I", n, &s[1], &work[ie], &work[iu], n, &vt[
  659. vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
  660. info);
  661. /* Overwrite WORK(IU) by left singular vectors of R */
  662. /* and VT by right singular vectors of R */
  663. /* (Workspace: need 2*N*N+3*N, prefer 2*N*N+2*N+N*NB) */
  664. i__1 = *lwork - nwork + 1;
  665. _starpu_dormbr_("Q", "L", "N", n, n, n, &work[ir], &ldwrkr, &work[
  666. itauq], &work[iu], n, &work[nwork], &i__1, &ierr);
  667. i__1 = *lwork - nwork + 1;
  668. _starpu_dormbr_("P", "R", "T", n, n, n, &work[ir], &ldwrkr, &work[
  669. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
  670. ierr);
  671. /* Multiply Q in A by left singular vectors of R in */
  672. /* WORK(IU), storing result in WORK(IR) and copying to A */
  673. /* (Workspace: need 2*N*N, prefer N*N+M*N) */
  674. i__1 = *m;
  675. i__2 = ldwrkr;
  676. for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ +=
  677. i__2) {
  678. /* Computing MIN */
  679. i__3 = *m - i__ + 1;
  680. chunk = min(i__3,ldwrkr);
  681. _starpu_dgemm_("N", "N", &chunk, n, n, &c_b248, &a[i__ + a_dim1],
  682. lda, &work[iu], n, &c_b227, &work[ir], &ldwrkr);
  683. _starpu_dlacpy_("F", &chunk, n, &work[ir], &ldwrkr, &a[i__ +
  684. a_dim1], lda);
  685. /* L10: */
  686. }
  687. } else if (wntqs) {
  688. /* Path 3 (M much larger than N, JOBZ='S') */
  689. /* N left singular vectors to be computed in U and */
  690. /* N right singular vectors to be computed in VT */
  691. ir = 1;
  692. /* WORK(IR) is N by N */
  693. ldwrkr = *n;
  694. itau = ir + ldwrkr * *n;
  695. nwork = itau + *n;
  696. /* Compute A=Q*R */
  697. /* (Workspace: need N*N+2*N, prefer N*N+N+N*NB) */
  698. i__2 = *lwork - nwork + 1;
  699. _starpu_dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  700. i__2, &ierr);
  701. /* Copy R to WORK(IR), zeroing out below it */
  702. _starpu_dlacpy_("U", n, n, &a[a_offset], lda, &work[ir], &ldwrkr);
  703. i__2 = *n - 1;
  704. i__1 = *n - 1;
  705. _starpu_dlaset_("L", &i__2, &i__1, &c_b227, &c_b227, &work[ir + 1], &
  706. ldwrkr);
  707. /* Generate Q in A */
  708. /* (Workspace: need N*N+2*N, prefer N*N+N+N*NB) */
  709. i__2 = *lwork - nwork + 1;
  710. _starpu_dorgqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[nwork],
  711. &i__2, &ierr);
  712. ie = itau;
  713. itauq = ie + *n;
  714. itaup = itauq + *n;
  715. nwork = itaup + *n;
  716. /* Bidiagonalize R in WORK(IR) */
  717. /* (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB) */
  718. i__2 = *lwork - nwork + 1;
  719. _starpu_dgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &work[ie], &work[
  720. itauq], &work[itaup], &work[nwork], &i__2, &ierr);
  721. /* Perform bidiagonal SVD, computing left singular vectors */
  722. /* of bidiagoal matrix in U and computing right singular */
  723. /* vectors of bidiagonal matrix in VT */
  724. /* (Workspace: need N+BDSPAC) */
  725. _starpu_dbdsdc_("U", "I", n, &s[1], &work[ie], &u[u_offset], ldu, &vt[
  726. vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
  727. info);
  728. /* Overwrite U by left singular vectors of R and VT */
  729. /* by right singular vectors of R */
  730. /* (Workspace: need N*N+3*N, prefer N*N+2*N+N*NB) */
  731. i__2 = *lwork - nwork + 1;
  732. _starpu_dormbr_("Q", "L", "N", n, n, n, &work[ir], &ldwrkr, &work[
  733. itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
  734. i__2 = *lwork - nwork + 1;
  735. _starpu_dormbr_("P", "R", "T", n, n, n, &work[ir], &ldwrkr, &work[
  736. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, &
  737. ierr);
  738. /* Multiply Q in A by left singular vectors of R in */
  739. /* WORK(IR), storing result in U */
  740. /* (Workspace: need N*N) */
  741. _starpu_dlacpy_("F", n, n, &u[u_offset], ldu, &work[ir], &ldwrkr);
  742. _starpu_dgemm_("N", "N", m, n, n, &c_b248, &a[a_offset], lda, &work[
  743. ir], &ldwrkr, &c_b227, &u[u_offset], ldu);
  744. } else if (wntqa) {
  745. /* Path 4 (M much larger than N, JOBZ='A') */
  746. /* M left singular vectors to be computed in U and */
  747. /* N right singular vectors to be computed in VT */
  748. iu = 1;
  749. /* WORK(IU) is N by N */
  750. ldwrku = *n;
  751. itau = iu + ldwrku * *n;
  752. nwork = itau + *n;
  753. /* Compute A=Q*R, copying result to U */
  754. /* (Workspace: need N*N+2*N, prefer N*N+N+N*NB) */
  755. i__2 = *lwork - nwork + 1;
  756. _starpu_dgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  757. i__2, &ierr);
  758. _starpu_dlacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], ldu);
  759. /* Generate Q in U */
  760. /* (Workspace: need N*N+2*N, prefer N*N+N+N*NB) */
  761. i__2 = *lwork - nwork + 1;
  762. _starpu_dorgqr_(m, m, n, &u[u_offset], ldu, &work[itau], &work[nwork],
  763. &i__2, &ierr);
  764. /* Produce R in A, zeroing out other entries */
  765. i__2 = *n - 1;
  766. i__1 = *n - 1;
  767. _starpu_dlaset_("L", &i__2, &i__1, &c_b227, &c_b227, &a[a_dim1 + 2],
  768. lda);
  769. ie = itau;
  770. itauq = ie + *n;
  771. itaup = itauq + *n;
  772. nwork = itaup + *n;
  773. /* Bidiagonalize R in A */
  774. /* (Workspace: need N*N+4*N, prefer N*N+3*N+2*N*NB) */
  775. i__2 = *lwork - nwork + 1;
  776. _starpu_dgebrd_(n, n, &a[a_offset], lda, &s[1], &work[ie], &work[
  777. itauq], &work[itaup], &work[nwork], &i__2, &ierr);
  778. /* Perform bidiagonal SVD, computing left singular vectors */
  779. /* of bidiagonal matrix in WORK(IU) and computing right */
  780. /* singular vectors of bidiagonal matrix in VT */
  781. /* (Workspace: need N+N*N+BDSPAC) */
  782. _starpu_dbdsdc_("U", "I", n, &s[1], &work[ie], &work[iu], n, &vt[
  783. vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
  784. info);
  785. /* Overwrite WORK(IU) by left singular vectors of R and VT */
  786. /* by right singular vectors of R */
  787. /* (Workspace: need N*N+3*N, prefer N*N+2*N+N*NB) */
  788. i__2 = *lwork - nwork + 1;
  789. _starpu_dormbr_("Q", "L", "N", n, n, n, &a[a_offset], lda, &work[
  790. itauq], &work[iu], &ldwrku, &work[nwork], &i__2, &
  791. ierr);
  792. i__2 = *lwork - nwork + 1;
  793. _starpu_dormbr_("P", "R", "T", n, n, n, &a[a_offset], lda, &work[
  794. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, &
  795. ierr);
  796. /* Multiply Q in U by left singular vectors of R in */
  797. /* WORK(IU), storing result in A */
  798. /* (Workspace: need N*N) */
  799. _starpu_dgemm_("N", "N", m, n, n, &c_b248, &u[u_offset], ldu, &work[
  800. iu], &ldwrku, &c_b227, &a[a_offset], lda);
  801. /* Copy left singular vectors of A from A to U */
  802. _starpu_dlacpy_("F", m, n, &a[a_offset], lda, &u[u_offset], ldu);
  803. }
  804. } else {
  805. /* M .LT. MNTHR */
  806. /* Path 5 (M at least N, but not much larger) */
  807. /* Reduce to bidiagonal form without QR decomposition */
  808. ie = 1;
  809. itauq = ie + *n;
  810. itaup = itauq + *n;
  811. nwork = itaup + *n;
  812. /* Bidiagonalize A */
  813. /* (Workspace: need 3*N+M, prefer 3*N+(M+N)*NB) */
  814. i__2 = *lwork - nwork + 1;
  815. _starpu_dgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
  816. work[itaup], &work[nwork], &i__2, &ierr);
  817. if (wntqn) {
  818. /* Perform bidiagonal SVD, only computing singular values */
  819. /* (Workspace: need N+BDSPAC) */
  820. _starpu_dbdsdc_("U", "N", n, &s[1], &work[ie], dum, &c__1, dum, &c__1,
  821. dum, idum, &work[nwork], &iwork[1], info);
  822. } else if (wntqo) {
  823. iu = nwork;
  824. if (*lwork >= *m * *n + *n * 3 + bdspac) {
  825. /* WORK( IU ) is M by N */
  826. ldwrku = *m;
  827. nwork = iu + ldwrku * *n;
  828. _starpu_dlaset_("F", m, n, &c_b227, &c_b227, &work[iu], &ldwrku);
  829. } else {
  830. /* WORK( IU ) is N by N */
  831. ldwrku = *n;
  832. nwork = iu + ldwrku * *n;
  833. /* WORK(IR) is LDWRKR by N */
  834. ir = nwork;
  835. ldwrkr = (*lwork - *n * *n - *n * 3) / *n;
  836. }
  837. nwork = iu + ldwrku * *n;
  838. /* Perform bidiagonal SVD, computing left singular vectors */
  839. /* of bidiagonal matrix in WORK(IU) and computing right */
  840. /* singular vectors of bidiagonal matrix in VT */
  841. /* (Workspace: need N+N*N+BDSPAC) */
  842. _starpu_dbdsdc_("U", "I", n, &s[1], &work[ie], &work[iu], &ldwrku, &
  843. vt[vt_offset], ldvt, dum, idum, &work[nwork], &iwork[
  844. 1], info);
  845. /* Overwrite VT by right singular vectors of A */
  846. /* (Workspace: need N*N+2*N, prefer N*N+N+N*NB) */
  847. i__2 = *lwork - nwork + 1;
  848. _starpu_dormbr_("P", "R", "T", n, n, n, &a[a_offset], lda, &work[
  849. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, &
  850. ierr);
  851. if (*lwork >= *m * *n + *n * 3 + bdspac) {
  852. /* Overwrite WORK(IU) by left singular vectors of A */
  853. /* (Workspace: need N*N+2*N, prefer N*N+N+N*NB) */
  854. i__2 = *lwork - nwork + 1;
  855. _starpu_dormbr_("Q", "L", "N", m, n, n, &a[a_offset], lda, &work[
  856. itauq], &work[iu], &ldwrku, &work[nwork], &i__2, &
  857. ierr);
  858. /* Copy left singular vectors of A from WORK(IU) to A */
  859. _starpu_dlacpy_("F", m, n, &work[iu], &ldwrku, &a[a_offset], lda);
  860. } else {
  861. /* Generate Q in A */
  862. /* (Workspace: need N*N+2*N, prefer N*N+N+N*NB) */
  863. i__2 = *lwork - nwork + 1;
  864. _starpu_dorgbr_("Q", m, n, n, &a[a_offset], lda, &work[itauq], &
  865. work[nwork], &i__2, &ierr);
  866. /* Multiply Q in A by left singular vectors of */
  867. /* bidiagonal matrix in WORK(IU), storing result in */
  868. /* WORK(IR) and copying to A */
  869. /* (Workspace: need 2*N*N, prefer N*N+M*N) */
  870. i__2 = *m;
  871. i__1 = ldwrkr;
  872. for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ +=
  873. i__1) {
  874. /* Computing MIN */
  875. i__3 = *m - i__ + 1;
  876. chunk = min(i__3,ldwrkr);
  877. _starpu_dgemm_("N", "N", &chunk, n, n, &c_b248, &a[i__ +
  878. a_dim1], lda, &work[iu], &ldwrku, &c_b227, &
  879. work[ir], &ldwrkr);
  880. _starpu_dlacpy_("F", &chunk, n, &work[ir], &ldwrkr, &a[i__ +
  881. a_dim1], lda);
  882. /* L20: */
  883. }
  884. }
  885. } else if (wntqs) {
  886. /* Perform bidiagonal SVD, computing left singular vectors */
  887. /* of bidiagonal matrix in U and computing right singular */
  888. /* vectors of bidiagonal matrix in VT */
  889. /* (Workspace: need N+BDSPAC) */
  890. _starpu_dlaset_("F", m, n, &c_b227, &c_b227, &u[u_offset], ldu);
  891. _starpu_dbdsdc_("U", "I", n, &s[1], &work[ie], &u[u_offset], ldu, &vt[
  892. vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
  893. info);
  894. /* Overwrite U by left singular vectors of A and VT */
  895. /* by right singular vectors of A */
  896. /* (Workspace: need 3*N, prefer 2*N+N*NB) */
  897. i__1 = *lwork - nwork + 1;
  898. _starpu_dormbr_("Q", "L", "N", m, n, n, &a[a_offset], lda, &work[
  899. itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
  900. i__1 = *lwork - nwork + 1;
  901. _starpu_dormbr_("P", "R", "T", n, n, n, &a[a_offset], lda, &work[
  902. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
  903. ierr);
  904. } else if (wntqa) {
  905. /* Perform bidiagonal SVD, computing left singular vectors */
  906. /* of bidiagonal matrix in U and computing right singular */
  907. /* vectors of bidiagonal matrix in VT */
  908. /* (Workspace: need N+BDSPAC) */
  909. _starpu_dlaset_("F", m, m, &c_b227, &c_b227, &u[u_offset], ldu);
  910. _starpu_dbdsdc_("U", "I", n, &s[1], &work[ie], &u[u_offset], ldu, &vt[
  911. vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
  912. info);
  913. /* Set the right corner of U to identity matrix */
  914. if (*m > *n) {
  915. i__1 = *m - *n;
  916. i__2 = *m - *n;
  917. _starpu_dlaset_("F", &i__1, &i__2, &c_b227, &c_b248, &u[*n + 1 + (
  918. *n + 1) * u_dim1], ldu);
  919. }
  920. /* Overwrite U by left singular vectors of A and VT */
  921. /* by right singular vectors of A */
  922. /* (Workspace: need N*N+2*N+M, prefer N*N+2*N+M*NB) */
  923. i__1 = *lwork - nwork + 1;
  924. _starpu_dormbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[
  925. itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
  926. i__1 = *lwork - nwork + 1;
  927. _starpu_dormbr_("P", "R", "T", n, n, m, &a[a_offset], lda, &work[
  928. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
  929. ierr);
  930. }
  931. }
  932. } else {
  933. /* A has more columns than rows. If A has sufficiently more */
  934. /* columns than rows, first reduce using the LQ decomposition (if */
  935. /* sufficient workspace available) */
  936. if (*n >= mnthr) {
  937. if (wntqn) {
  938. /* Path 1t (N much larger than M, JOBZ='N') */
  939. /* No singular vectors to be computed */
  940. itau = 1;
  941. nwork = itau + *m;
  942. /* Compute A=L*Q */
  943. /* (Workspace: need 2*M, prefer M+M*NB) */
  944. i__1 = *lwork - nwork + 1;
  945. _starpu_dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  946. i__1, &ierr);
  947. /* Zero out above L */
  948. i__1 = *m - 1;
  949. i__2 = *m - 1;
  950. _starpu_dlaset_("U", &i__1, &i__2, &c_b227, &c_b227, &a[(a_dim1 << 1)
  951. + 1], lda);
  952. ie = 1;
  953. itauq = ie + *m;
  954. itaup = itauq + *m;
  955. nwork = itaup + *m;
  956. /* Bidiagonalize L in A */
  957. /* (Workspace: need 4*M, prefer 3*M+2*M*NB) */
  958. i__1 = *lwork - nwork + 1;
  959. _starpu_dgebrd_(m, m, &a[a_offset], lda, &s[1], &work[ie], &work[
  960. itauq], &work[itaup], &work[nwork], &i__1, &ierr);
  961. nwork = ie + *m;
  962. /* Perform bidiagonal SVD, computing singular values only */
  963. /* (Workspace: need M+BDSPAC) */
  964. _starpu_dbdsdc_("U", "N", m, &s[1], &work[ie], dum, &c__1, dum, &c__1,
  965. dum, idum, &work[nwork], &iwork[1], info);
  966. } else if (wntqo) {
  967. /* Path 2t (N much larger than M, JOBZ='O') */
  968. /* M right singular vectors to be overwritten on A and */
  969. /* M left singular vectors to be computed in U */
  970. ivt = 1;
  971. /* IVT is M by M */
  972. il = ivt + *m * *m;
  973. if (*lwork >= *m * *n + *m * *m + *m * 3 + bdspac) {
  974. /* WORK(IL) is M by N */
  975. ldwrkl = *m;
  976. chunk = *n;
  977. } else {
  978. ldwrkl = *m;
  979. chunk = (*lwork - *m * *m) / *m;
  980. }
  981. itau = il + ldwrkl * *m;
  982. nwork = itau + *m;
  983. /* Compute A=L*Q */
  984. /* (Workspace: need M*M+2*M, prefer M*M+M+M*NB) */
  985. i__1 = *lwork - nwork + 1;
  986. _starpu_dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  987. i__1, &ierr);
  988. /* Copy L to WORK(IL), zeroing about above it */
  989. _starpu_dlacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwrkl);
  990. i__1 = *m - 1;
  991. i__2 = *m - 1;
  992. _starpu_dlaset_("U", &i__1, &i__2, &c_b227, &c_b227, &work[il +
  993. ldwrkl], &ldwrkl);
  994. /* Generate Q in A */
  995. /* (Workspace: need M*M+2*M, prefer M*M+M+M*NB) */
  996. i__1 = *lwork - nwork + 1;
  997. _starpu_dorglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[nwork],
  998. &i__1, &ierr);
  999. ie = itau;
  1000. itauq = ie + *m;
  1001. itaup = itauq + *m;
  1002. nwork = itaup + *m;
  1003. /* Bidiagonalize L in WORK(IL) */
  1004. /* (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB) */
  1005. i__1 = *lwork - nwork + 1;
  1006. _starpu_dgebrd_(m, m, &work[il], &ldwrkl, &s[1], &work[ie], &work[
  1007. itauq], &work[itaup], &work[nwork], &i__1, &ierr);
  1008. /* Perform bidiagonal SVD, computing left singular vectors */
  1009. /* of bidiagonal matrix in U, and computing right singular */
  1010. /* vectors of bidiagonal matrix in WORK(IVT) */
  1011. /* (Workspace: need M+M*M+BDSPAC) */
  1012. _starpu_dbdsdc_("U", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &
  1013. work[ivt], m, dum, idum, &work[nwork], &iwork[1],
  1014. info);
  1015. /* Overwrite U by left singular vectors of L and WORK(IVT) */
  1016. /* by right singular vectors of L */
  1017. /* (Workspace: need 2*M*M+3*M, prefer 2*M*M+2*M+M*NB) */
  1018. i__1 = *lwork - nwork + 1;
  1019. _starpu_dormbr_("Q", "L", "N", m, m, m, &work[il], &ldwrkl, &work[
  1020. itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
  1021. i__1 = *lwork - nwork + 1;
  1022. _starpu_dormbr_("P", "R", "T", m, m, m, &work[il], &ldwrkl, &work[
  1023. itaup], &work[ivt], m, &work[nwork], &i__1, &ierr);
  1024. /* Multiply right singular vectors of L in WORK(IVT) by Q */
  1025. /* in A, storing result in WORK(IL) and copying to A */
  1026. /* (Workspace: need 2*M*M, prefer M*M+M*N) */
  1027. i__1 = *n;
  1028. i__2 = chunk;
  1029. for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ +=
  1030. i__2) {
  1031. /* Computing MIN */
  1032. i__3 = *n - i__ + 1;
  1033. blk = min(i__3,chunk);
  1034. _starpu_dgemm_("N", "N", m, &blk, m, &c_b248, &work[ivt], m, &a[
  1035. i__ * a_dim1 + 1], lda, &c_b227, &work[il], &
  1036. ldwrkl);
  1037. _starpu_dlacpy_("F", m, &blk, &work[il], &ldwrkl, &a[i__ * a_dim1
  1038. + 1], lda);
  1039. /* L30: */
  1040. }
  1041. } else if (wntqs) {
  1042. /* Path 3t (N much larger than M, JOBZ='S') */
  1043. /* M right singular vectors to be computed in VT and */
  1044. /* M left singular vectors to be computed in U */
  1045. il = 1;
  1046. /* WORK(IL) is M by M */
  1047. ldwrkl = *m;
  1048. itau = il + ldwrkl * *m;
  1049. nwork = itau + *m;
  1050. /* Compute A=L*Q */
  1051. /* (Workspace: need M*M+2*M, prefer M*M+M+M*NB) */
  1052. i__2 = *lwork - nwork + 1;
  1053. _starpu_dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  1054. i__2, &ierr);
  1055. /* Copy L to WORK(IL), zeroing out above it */
  1056. _starpu_dlacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwrkl);
  1057. i__2 = *m - 1;
  1058. i__1 = *m - 1;
  1059. _starpu_dlaset_("U", &i__2, &i__1, &c_b227, &c_b227, &work[il +
  1060. ldwrkl], &ldwrkl);
  1061. /* Generate Q in A */
  1062. /* (Workspace: need M*M+2*M, prefer M*M+M+M*NB) */
  1063. i__2 = *lwork - nwork + 1;
  1064. _starpu_dorglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[nwork],
  1065. &i__2, &ierr);
  1066. ie = itau;
  1067. itauq = ie + *m;
  1068. itaup = itauq + *m;
  1069. nwork = itaup + *m;
  1070. /* Bidiagonalize L in WORK(IU), copying result to U */
  1071. /* (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB) */
  1072. i__2 = *lwork - nwork + 1;
  1073. _starpu_dgebrd_(m, m, &work[il], &ldwrkl, &s[1], &work[ie], &work[
  1074. itauq], &work[itaup], &work[nwork], &i__2, &ierr);
  1075. /* Perform bidiagonal SVD, computing left singular vectors */
  1076. /* of bidiagonal matrix in U and computing right singular */
  1077. /* vectors of bidiagonal matrix in VT */
  1078. /* (Workspace: need M+BDSPAC) */
  1079. _starpu_dbdsdc_("U", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &vt[
  1080. vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
  1081. info);
  1082. /* Overwrite U by left singular vectors of L and VT */
  1083. /* by right singular vectors of L */
  1084. /* (Workspace: need M*M+3*M, prefer M*M+2*M+M*NB) */
  1085. i__2 = *lwork - nwork + 1;
  1086. _starpu_dormbr_("Q", "L", "N", m, m, m, &work[il], &ldwrkl, &work[
  1087. itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
  1088. i__2 = *lwork - nwork + 1;
  1089. _starpu_dormbr_("P", "R", "T", m, m, m, &work[il], &ldwrkl, &work[
  1090. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, &
  1091. ierr);
  1092. /* Multiply right singular vectors of L in WORK(IL) by */
  1093. /* Q in A, storing result in VT */
  1094. /* (Workspace: need M*M) */
  1095. _starpu_dlacpy_("F", m, m, &vt[vt_offset], ldvt, &work[il], &ldwrkl);
  1096. _starpu_dgemm_("N", "N", m, n, m, &c_b248, &work[il], &ldwrkl, &a[
  1097. a_offset], lda, &c_b227, &vt[vt_offset], ldvt);
  1098. } else if (wntqa) {
  1099. /* Path 4t (N much larger than M, JOBZ='A') */
  1100. /* N right singular vectors to be computed in VT and */
  1101. /* M left singular vectors to be computed in U */
  1102. ivt = 1;
  1103. /* WORK(IVT) is M by M */
  1104. ldwkvt = *m;
  1105. itau = ivt + ldwkvt * *m;
  1106. nwork = itau + *m;
  1107. /* Compute A=L*Q, copying result to VT */
  1108. /* (Workspace: need M*M+2*M, prefer M*M+M+M*NB) */
  1109. i__2 = *lwork - nwork + 1;
  1110. _starpu_dgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  1111. i__2, &ierr);
  1112. _starpu_dlacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
  1113. /* Generate Q in VT */
  1114. /* (Workspace: need M*M+2*M, prefer M*M+M+M*NB) */
  1115. i__2 = *lwork - nwork + 1;
  1116. _starpu_dorglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], &work[
  1117. nwork], &i__2, &ierr);
  1118. /* Produce L in A, zeroing out other entries */
  1119. i__2 = *m - 1;
  1120. i__1 = *m - 1;
  1121. _starpu_dlaset_("U", &i__2, &i__1, &c_b227, &c_b227, &a[(a_dim1 << 1)
  1122. + 1], lda);
  1123. ie = itau;
  1124. itauq = ie + *m;
  1125. itaup = itauq + *m;
  1126. nwork = itaup + *m;
  1127. /* Bidiagonalize L in A */
  1128. /* (Workspace: need M*M+4*M, prefer M*M+3*M+2*M*NB) */
  1129. i__2 = *lwork - nwork + 1;
  1130. _starpu_dgebrd_(m, m, &a[a_offset], lda, &s[1], &work[ie], &work[
  1131. itauq], &work[itaup], &work[nwork], &i__2, &ierr);
  1132. /* Perform bidiagonal SVD, computing left singular vectors */
  1133. /* of bidiagonal matrix in U and computing right singular */
  1134. /* vectors of bidiagonal matrix in WORK(IVT) */
  1135. /* (Workspace: need M+M*M+BDSPAC) */
  1136. _starpu_dbdsdc_("U", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &
  1137. work[ivt], &ldwkvt, dum, idum, &work[nwork], &iwork[1]
  1138. , info);
  1139. /* Overwrite U by left singular vectors of L and WORK(IVT) */
  1140. /* by right singular vectors of L */
  1141. /* (Workspace: need M*M+3*M, prefer M*M+2*M+M*NB) */
  1142. i__2 = *lwork - nwork + 1;
  1143. _starpu_dormbr_("Q", "L", "N", m, m, m, &a[a_offset], lda, &work[
  1144. itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
  1145. i__2 = *lwork - nwork + 1;
  1146. _starpu_dormbr_("P", "R", "T", m, m, m, &a[a_offset], lda, &work[
  1147. itaup], &work[ivt], &ldwkvt, &work[nwork], &i__2, &
  1148. ierr);
  1149. /* Multiply right singular vectors of L in WORK(IVT) by */
  1150. /* Q in VT, storing result in A */
  1151. /* (Workspace: need M*M) */
  1152. _starpu_dgemm_("N", "N", m, n, m, &c_b248, &work[ivt], &ldwkvt, &vt[
  1153. vt_offset], ldvt, &c_b227, &a[a_offset], lda);
  1154. /* Copy right singular vectors of A from A to VT */
  1155. _starpu_dlacpy_("F", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
  1156. }
  1157. } else {
  1158. /* N .LT. MNTHR */
  1159. /* Path 5t (N greater than M, but not much larger) */
  1160. /* Reduce to bidiagonal form without LQ decomposition */
  1161. ie = 1;
  1162. itauq = ie + *m;
  1163. itaup = itauq + *m;
  1164. nwork = itaup + *m;
  1165. /* Bidiagonalize A */
  1166. /* (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB) */
  1167. i__2 = *lwork - nwork + 1;
  1168. _starpu_dgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
  1169. work[itaup], &work[nwork], &i__2, &ierr);
  1170. if (wntqn) {
  1171. /* Perform bidiagonal SVD, only computing singular values */
  1172. /* (Workspace: need M+BDSPAC) */
  1173. _starpu_dbdsdc_("L", "N", m, &s[1], &work[ie], dum, &c__1, dum, &c__1,
  1174. dum, idum, &work[nwork], &iwork[1], info);
  1175. } else if (wntqo) {
  1176. ldwkvt = *m;
  1177. ivt = nwork;
  1178. if (*lwork >= *m * *n + *m * 3 + bdspac) {
  1179. /* WORK( IVT ) is M by N */
  1180. _starpu_dlaset_("F", m, n, &c_b227, &c_b227, &work[ivt], &ldwkvt);
  1181. nwork = ivt + ldwkvt * *n;
  1182. } else {
  1183. /* WORK( IVT ) is M by M */
  1184. nwork = ivt + ldwkvt * *m;
  1185. il = nwork;
  1186. /* WORK(IL) is M by CHUNK */
  1187. chunk = (*lwork - *m * *m - *m * 3) / *m;
  1188. }
  1189. /* Perform bidiagonal SVD, computing left singular vectors */
  1190. /* of bidiagonal matrix in U and computing right singular */
  1191. /* vectors of bidiagonal matrix in WORK(IVT) */
  1192. /* (Workspace: need M*M+BDSPAC) */
  1193. _starpu_dbdsdc_("L", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &
  1194. work[ivt], &ldwkvt, dum, idum, &work[nwork], &iwork[1]
  1195. , info);
  1196. /* Overwrite U by left singular vectors of A */
  1197. /* (Workspace: need M*M+2*M, prefer M*M+M+M*NB) */
  1198. i__2 = *lwork - nwork + 1;
  1199. _starpu_dormbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[
  1200. itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
  1201. if (*lwork >= *m * *n + *m * 3 + bdspac) {
  1202. /* Overwrite WORK(IVT) by left singular vectors of A */
  1203. /* (Workspace: need M*M+2*M, prefer M*M+M+M*NB) */
  1204. i__2 = *lwork - nwork + 1;
  1205. _starpu_dormbr_("P", "R", "T", m, n, m, &a[a_offset], lda, &work[
  1206. itaup], &work[ivt], &ldwkvt, &work[nwork], &i__2,
  1207. &ierr);
  1208. /* Copy right singular vectors of A from WORK(IVT) to A */
  1209. _starpu_dlacpy_("F", m, n, &work[ivt], &ldwkvt, &a[a_offset], lda);
  1210. } else {
  1211. /* Generate P**T in A */
  1212. /* (Workspace: need M*M+2*M, prefer M*M+M+M*NB) */
  1213. i__2 = *lwork - nwork + 1;
  1214. _starpu_dorgbr_("P", m, n, m, &a[a_offset], lda, &work[itaup], &
  1215. work[nwork], &i__2, &ierr);
  1216. /* Multiply Q in A by right singular vectors of */
  1217. /* bidiagonal matrix in WORK(IVT), storing result in */
  1218. /* WORK(IL) and copying to A */
  1219. /* (Workspace: need 2*M*M, prefer M*M+M*N) */
  1220. i__2 = *n;
  1221. i__1 = chunk;
  1222. for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ +=
  1223. i__1) {
  1224. /* Computing MIN */
  1225. i__3 = *n - i__ + 1;
  1226. blk = min(i__3,chunk);
  1227. _starpu_dgemm_("N", "N", m, &blk, m, &c_b248, &work[ivt], &
  1228. ldwkvt, &a[i__ * a_dim1 + 1], lda, &c_b227, &
  1229. work[il], m);
  1230. _starpu_dlacpy_("F", m, &blk, &work[il], m, &a[i__ * a_dim1 +
  1231. 1], lda);
  1232. /* L40: */
  1233. }
  1234. }
  1235. } else if (wntqs) {
  1236. /* Perform bidiagonal SVD, computing left singular vectors */
  1237. /* of bidiagonal matrix in U and computing right singular */
  1238. /* vectors of bidiagonal matrix in VT */
  1239. /* (Workspace: need M+BDSPAC) */
  1240. _starpu_dlaset_("F", m, n, &c_b227, &c_b227, &vt[vt_offset], ldvt);
  1241. _starpu_dbdsdc_("L", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &vt[
  1242. vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
  1243. info);
  1244. /* Overwrite U by left singular vectors of A and VT */
  1245. /* by right singular vectors of A */
  1246. /* (Workspace: need 3*M, prefer 2*M+M*NB) */
  1247. i__1 = *lwork - nwork + 1;
  1248. _starpu_dormbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[
  1249. itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
  1250. i__1 = *lwork - nwork + 1;
  1251. _starpu_dormbr_("P", "R", "T", m, n, m, &a[a_offset], lda, &work[
  1252. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
  1253. ierr);
  1254. } else if (wntqa) {
  1255. /* Perform bidiagonal SVD, computing left singular vectors */
  1256. /* of bidiagonal matrix in U and computing right singular */
  1257. /* vectors of bidiagonal matrix in VT */
  1258. /* (Workspace: need M+BDSPAC) */
  1259. _starpu_dlaset_("F", n, n, &c_b227, &c_b227, &vt[vt_offset], ldvt);
  1260. _starpu_dbdsdc_("L", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &vt[
  1261. vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1],
  1262. info);
  1263. /* Set the right corner of VT to identity matrix */
  1264. if (*n > *m) {
  1265. i__1 = *n - *m;
  1266. i__2 = *n - *m;
  1267. _starpu_dlaset_("F", &i__1, &i__2, &c_b227, &c_b248, &vt[*m + 1 +
  1268. (*m + 1) * vt_dim1], ldvt);
  1269. }
  1270. /* Overwrite U by left singular vectors of A and VT */
  1271. /* by right singular vectors of A */
  1272. /* (Workspace: need 2*M+N, prefer 2*M+N*NB) */
  1273. i__1 = *lwork - nwork + 1;
  1274. _starpu_dormbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[
  1275. itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
  1276. i__1 = *lwork - nwork + 1;
  1277. _starpu_dormbr_("P", "R", "T", n, n, m, &a[a_offset], lda, &work[
  1278. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
  1279. ierr);
  1280. }
  1281. }
  1282. }
  1283. /* Undo scaling if necessary */
  1284. if (iscl == 1) {
  1285. if (anrm > bignum) {
  1286. _starpu_dlascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
  1287. minmn, &ierr);
  1288. }
  1289. if (anrm < smlnum) {
  1290. _starpu_dlascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
  1291. minmn, &ierr);
  1292. }
  1293. }
  1294. /* Return optimal workspace in WORK(1) */
  1295. work[1] = (doublereal) maxwrk;
  1296. return 0;
  1297. /* End of DGESDD */
  1298. } /* _starpu_dgesdd_ */