123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359 |
- /* dgeqp3.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static integer c_n1 = -1;
- static integer c__3 = 3;
- static integer c__2 = 2;
- /* Subroutine */ int _starpu_dgeqp3_(integer *m, integer *n, doublereal *a, integer *
- lda, integer *jpvt, doublereal *tau, doublereal *work, integer *lwork,
- integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3;
- /* Local variables */
- integer j, jb, na, nb, sm, sn, nx, fjb, iws, nfxd;
- extern doublereal _starpu_dnrm2_(integer *, doublereal *, integer *);
- integer nbmin, minmn;
- extern /* Subroutine */ int _starpu_dswap_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- integer minws;
- extern /* Subroutine */ int _starpu_dlaqp2_(integer *, integer *, integer *,
- doublereal *, integer *, integer *, doublereal *, doublereal *,
- doublereal *, doublereal *), _starpu_dgeqrf_(integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *,
- integer *), _starpu_xerbla_(char *, integer *);
- extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *);
- extern /* Subroutine */ int _starpu_dlaqps_(integer *, integer *, integer *,
- integer *, integer *, doublereal *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, integer *);
- integer topbmn, sminmn;
- extern /* Subroutine */ int _starpu_dormqr_(char *, char *, integer *, integer *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, integer *);
- integer lwkopt;
- logical lquery;
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DGEQP3 computes a QR factorization with column pivoting of a */
- /* matrix A: A*P = Q*R using Level 3 BLAS. */
- /* Arguments */
- /* ========= */
- /* M (input) INTEGER */
- /* The number of rows of the matrix A. M >= 0. */
- /* N (input) INTEGER */
- /* The number of columns of the matrix A. N >= 0. */
- /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
- /* On entry, the M-by-N matrix A. */
- /* On exit, the upper triangle of the array contains the */
- /* min(M,N)-by-N upper trapezoidal matrix R; the elements below */
- /* the diagonal, together with the array TAU, represent the */
- /* orthogonal matrix Q as a product of min(M,N) elementary */
- /* reflectors. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,M). */
- /* JPVT (input/output) INTEGER array, dimension (N) */
- /* On entry, if JPVT(J).ne.0, the J-th column of A is permuted */
- /* to the front of A*P (a leading column); if JPVT(J)=0, */
- /* the J-th column of A is a free column. */
- /* On exit, if JPVT(J)=K, then the J-th column of A*P was the */
- /* the K-th column of A. */
- /* TAU (output) DOUBLE PRECISION array, dimension (min(M,N)) */
- /* The scalar factors of the elementary reflectors. */
- /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
- /* On exit, if INFO=0, WORK(1) returns the optimal LWORK. */
- /* LWORK (input) INTEGER */
- /* The dimension of the array WORK. LWORK >= 3*N+1. */
- /* For optimal performance LWORK >= 2*N+( N+1 )*NB, where NB */
- /* is the optimal blocksize. */
- /* If LWORK = -1, then a workspace query is assumed; the routine */
- /* only calculates the optimal size of the WORK array, returns */
- /* this value as the first entry of the WORK array, and no error */
- /* message related to LWORK is issued by XERBLA. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit. */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* Further Details */
- /* =============== */
- /* The matrix Q is represented as a product of elementary reflectors */
- /* Q = H(1) H(2) . . . H(k), where k = min(m,n). */
- /* Each H(i) has the form */
- /* H(i) = I - tau * v * v' */
- /* where tau is a real/complex scalar, and v is a real/complex vector */
- /* with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in */
- /* A(i+1:m,i), and tau in TAU(i). */
- /* Based on contributions by */
- /* G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain */
- /* X. Sun, Computer Science Dept., Duke University, USA */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test input arguments */
- /* ==================== */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- --jpvt;
- --tau;
- --work;
- /* Function Body */
- *info = 0;
- lquery = *lwork == -1;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*m)) {
- *info = -4;
- }
- if (*info == 0) {
- minmn = min(*m,*n);
- if (minmn == 0) {
- iws = 1;
- lwkopt = 1;
- } else {
- iws = *n * 3 + 1;
- nb = _starpu_ilaenv_(&c__1, "DGEQRF", " ", m, n, &c_n1, &c_n1);
- lwkopt = (*n << 1) + (*n + 1) * nb;
- }
- work[1] = (doublereal) lwkopt;
- if (*lwork < iws && ! lquery) {
- *info = -8;
- }
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DGEQP3", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
- /* Quick return if possible. */
- if (minmn == 0) {
- return 0;
- }
- /* Move initial columns up front. */
- nfxd = 1;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (jpvt[j] != 0) {
- if (j != nfxd) {
- _starpu_dswap_(m, &a[j * a_dim1 + 1], &c__1, &a[nfxd * a_dim1 + 1], &
- c__1);
- jpvt[j] = jpvt[nfxd];
- jpvt[nfxd] = j;
- } else {
- jpvt[j] = j;
- }
- ++nfxd;
- } else {
- jpvt[j] = j;
- }
- /* L10: */
- }
- --nfxd;
- /* Factorize fixed columns */
- /* ======================= */
- /* Compute the QR factorization of fixed columns and update */
- /* remaining columns. */
- if (nfxd > 0) {
- na = min(*m,nfxd);
- /* CC CALL DGEQR2( M, NA, A, LDA, TAU, WORK, INFO ) */
- _starpu_dgeqrf_(m, &na, &a[a_offset], lda, &tau[1], &work[1], lwork, info);
- /* Computing MAX */
- i__1 = iws, i__2 = (integer) work[1];
- iws = max(i__1,i__2);
- if (na < *n) {
- /* CC CALL DORM2R( 'Left', 'Transpose', M, N-NA, NA, A, LDA, */
- /* CC $ TAU, A( 1, NA+1 ), LDA, WORK, INFO ) */
- i__1 = *n - na;
- _starpu_dormqr_("Left", "Transpose", m, &i__1, &na, &a[a_offset], lda, &
- tau[1], &a[(na + 1) * a_dim1 + 1], lda, &work[1], lwork,
- info);
- /* Computing MAX */
- i__1 = iws, i__2 = (integer) work[1];
- iws = max(i__1,i__2);
- }
- }
- /* Factorize free columns */
- /* ====================== */
- if (nfxd < minmn) {
- sm = *m - nfxd;
- sn = *n - nfxd;
- sminmn = minmn - nfxd;
- /* Determine the block size. */
- nb = _starpu_ilaenv_(&c__1, "DGEQRF", " ", &sm, &sn, &c_n1, &c_n1);
- nbmin = 2;
- nx = 0;
- if (nb > 1 && nb < sminmn) {
- /* Determine when to cross over from blocked to unblocked code. */
- /* Computing MAX */
- i__1 = 0, i__2 = _starpu_ilaenv_(&c__3, "DGEQRF", " ", &sm, &sn, &c_n1, &
- c_n1);
- nx = max(i__1,i__2);
- if (nx < sminmn) {
- /* Determine if workspace is large enough for blocked code. */
- minws = (sn << 1) + (sn + 1) * nb;
- iws = max(iws,minws);
- if (*lwork < minws) {
- /* Not enough workspace to use optimal NB: Reduce NB and */
- /* determine the minimum value of NB. */
- nb = (*lwork - (sn << 1)) / (sn + 1);
- /* Computing MAX */
- i__1 = 2, i__2 = _starpu_ilaenv_(&c__2, "DGEQRF", " ", &sm, &sn, &
- c_n1, &c_n1);
- nbmin = max(i__1,i__2);
- }
- }
- }
- /* Initialize partial column norms. The first N elements of work */
- /* store the exact column norms. */
- i__1 = *n;
- for (j = nfxd + 1; j <= i__1; ++j) {
- work[j] = _starpu_dnrm2_(&sm, &a[nfxd + 1 + j * a_dim1], &c__1);
- work[*n + j] = work[j];
- /* L20: */
- }
- if (nb >= nbmin && nb < sminmn && nx < sminmn) {
- /* Use blocked code initially. */
- j = nfxd + 1;
- /* Compute factorization: while loop. */
- topbmn = minmn - nx;
- L30:
- if (j <= topbmn) {
- /* Computing MIN */
- i__1 = nb, i__2 = topbmn - j + 1;
- jb = min(i__1,i__2);
- /* Factorize JB columns among columns J:N. */
- i__1 = *n - j + 1;
- i__2 = j - 1;
- i__3 = *n - j + 1;
- _starpu_dlaqps_(m, &i__1, &i__2, &jb, &fjb, &a[j * a_dim1 + 1], lda, &
- jpvt[j], &tau[j], &work[j], &work[*n + j], &work[(*n
- << 1) + 1], &work[(*n << 1) + jb + 1], &i__3);
- j += fjb;
- goto L30;
- }
- } else {
- j = nfxd + 1;
- }
- /* Use unblocked code to factor the last or only block. */
- if (j <= minmn) {
- i__1 = *n - j + 1;
- i__2 = j - 1;
- _starpu_dlaqp2_(m, &i__1, &i__2, &a[j * a_dim1 + 1], lda, &jpvt[j], &tau[
- j], &work[j], &work[*n + j], &work[(*n << 1) + 1]);
- }
- }
- work[1] = (doublereal) iws;
- return 0;
- /* End of DGEQP3 */
- } /* _starpu_dgeqp3_ */
|