123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160 |
- /* dgeql2.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- /* Subroutine */ int _starpu_dgeql2_(integer *m, integer *n, doublereal *a, integer *
- lda, doublereal *tau, doublereal *work, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2;
- /* Local variables */
- integer i__, k;
- doublereal aii;
- extern /* Subroutine */ int _starpu_dlarf_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *,
- doublereal *), _starpu_dlarfp_(integer *, doublereal *,
- doublereal *, integer *, doublereal *), _starpu_xerbla_(char *, integer *);
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DGEQL2 computes a QL factorization of a real m by n matrix A: */
- /* A = Q * L. */
- /* Arguments */
- /* ========= */
- /* M (input) INTEGER */
- /* The number of rows of the matrix A. M >= 0. */
- /* N (input) INTEGER */
- /* The number of columns of the matrix A. N >= 0. */
- /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
- /* On entry, the m by n matrix A. */
- /* On exit, if m >= n, the lower triangle of the subarray */
- /* A(m-n+1:m,1:n) contains the n by n lower triangular matrix L; */
- /* if m <= n, the elements on and below the (n-m)-th */
- /* superdiagonal contain the m by n lower trapezoidal matrix L; */
- /* the remaining elements, with the array TAU, represent the */
- /* orthogonal matrix Q as a product of elementary reflectors */
- /* (see Further Details). */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,M). */
- /* TAU (output) DOUBLE PRECISION array, dimension (min(M,N)) */
- /* The scalar factors of the elementary reflectors (see Further */
- /* Details). */
- /* WORK (workspace) DOUBLE PRECISION array, dimension (N) */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* Further Details */
- /* =============== */
- /* The matrix Q is represented as a product of elementary reflectors */
- /* Q = H(k) . . . H(2) H(1), where k = min(m,n). */
- /* Each H(i) has the form */
- /* H(i) = I - tau * v * v' */
- /* where tau is a real scalar, and v is a real vector with */
- /* v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in */
- /* A(1:m-k+i-1,n-k+i), and tau in TAU(i). */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input arguments */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- --tau;
- --work;
- /* Function Body */
- *info = 0;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*m)) {
- *info = -4;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DGEQL2", &i__1);
- return 0;
- }
- k = min(*m,*n);
- for (i__ = k; i__ >= 1; --i__) {
- /* Generate elementary reflector H(i) to annihilate */
- /* A(1:m-k+i-1,n-k+i) */
- i__1 = *m - k + i__;
- _starpu_dlarfp_(&i__1, &a[*m - k + i__ + (*n - k + i__) * a_dim1], &a[(*n - k
- + i__) * a_dim1 + 1], &c__1, &tau[i__]);
- /* Apply H(i) to A(1:m-k+i,1:n-k+i-1) from the left */
- aii = a[*m - k + i__ + (*n - k + i__) * a_dim1];
- a[*m - k + i__ + (*n - k + i__) * a_dim1] = 1.;
- i__1 = *m - k + i__;
- i__2 = *n - k + i__ - 1;
- _starpu_dlarf_("Left", &i__1, &i__2, &a[(*n - k + i__) * a_dim1 + 1], &c__1, &
- tau[i__], &a[a_offset], lda, &work[1]);
- a[*m - k + i__ + (*n - k + i__) * a_dim1] = aii;
- /* L10: */
- }
- return 0;
- /* End of DGEQL2 */
- } /* _starpu_dgeql2_ */
|