123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192 |
- /* dgehd2.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- /* Subroutine */ int _starpu_dgehd2_(integer *n, integer *ilo, integer *ihi,
- doublereal *a, integer *lda, doublereal *tau, doublereal *work,
- integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3;
- /* Local variables */
- integer i__;
- doublereal aii;
- extern /* Subroutine */ int _starpu_dlarf_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *,
- doublereal *), _starpu_dlarfg_(integer *, doublereal *,
- doublereal *, integer *, doublereal *), _starpu_xerbla_(char *, integer *);
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DGEHD2 reduces a real general matrix A to upper Hessenberg form H by */
- /* an orthogonal similarity transformation: Q' * A * Q = H . */
- /* Arguments */
- /* ========= */
- /* N (input) INTEGER */
- /* The order of the matrix A. N >= 0. */
- /* ILO (input) INTEGER */
- /* IHI (input) INTEGER */
- /* It is assumed that A is already upper triangular in rows */
- /* and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally */
- /* set by a previous call to DGEBAL; otherwise they should be */
- /* set to 1 and N respectively. See Further Details. */
- /* 1 <= ILO <= IHI <= max(1,N). */
- /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
- /* On entry, the n by n general matrix to be reduced. */
- /* On exit, the upper triangle and the first subdiagonal of A */
- /* are overwritten with the upper Hessenberg matrix H, and the */
- /* elements below the first subdiagonal, with the array TAU, */
- /* represent the orthogonal matrix Q as a product of elementary */
- /* reflectors. See Further Details. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,N). */
- /* TAU (output) DOUBLE PRECISION array, dimension (N-1) */
- /* The scalar factors of the elementary reflectors (see Further */
- /* Details). */
- /* WORK (workspace) DOUBLE PRECISION array, dimension (N) */
- /* INFO (output) INTEGER */
- /* = 0: successful exit. */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* Further Details */
- /* =============== */
- /* The matrix Q is represented as a product of (ihi-ilo) elementary */
- /* reflectors */
- /* Q = H(ilo) H(ilo+1) . . . H(ihi-1). */
- /* Each H(i) has the form */
- /* H(i) = I - tau * v * v' */
- /* where tau is a real scalar, and v is a real vector with */
- /* v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on */
- /* exit in A(i+2:ihi,i), and tau in TAU(i). */
- /* The contents of A are illustrated by the following example, with */
- /* n = 7, ilo = 2 and ihi = 6: */
- /* on entry, on exit, */
- /* ( a a a a a a a ) ( a a h h h h a ) */
- /* ( a a a a a a ) ( a h h h h a ) */
- /* ( a a a a a a ) ( h h h h h h ) */
- /* ( a a a a a a ) ( v2 h h h h h ) */
- /* ( a a a a a a ) ( v2 v3 h h h h ) */
- /* ( a a a a a a ) ( v2 v3 v4 h h h ) */
- /* ( a ) ( a ) */
- /* where a denotes an element of the original matrix A, h denotes a */
- /* modified element of the upper Hessenberg matrix H, and vi denotes an */
- /* element of the vector defining H(i). */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- --tau;
- --work;
- /* Function Body */
- *info = 0;
- if (*n < 0) {
- *info = -1;
- } else if (*ilo < 1 || *ilo > max(1,*n)) {
- *info = -2;
- } else if (*ihi < min(*ilo,*n) || *ihi > *n) {
- *info = -3;
- } else if (*lda < max(1,*n)) {
- *info = -5;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DGEHD2", &i__1);
- return 0;
- }
- i__1 = *ihi - 1;
- for (i__ = *ilo; i__ <= i__1; ++i__) {
- /* Compute elementary reflector H(i) to annihilate A(i+2:ihi,i) */
- i__2 = *ihi - i__;
- /* Computing MIN */
- i__3 = i__ + 2;
- _starpu_dlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3, *n)+ i__ *
- a_dim1], &c__1, &tau[i__]);
- aii = a[i__ + 1 + i__ * a_dim1];
- a[i__ + 1 + i__ * a_dim1] = 1.;
- /* Apply H(i) to A(1:ihi,i+1:ihi) from the right */
- i__2 = *ihi - i__;
- _starpu_dlarf_("Right", ihi, &i__2, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[
- i__], &a[(i__ + 1) * a_dim1 + 1], lda, &work[1]);
- /* Apply H(i) to A(i+1:ihi,i+1:n) from the left */
- i__2 = *ihi - i__;
- i__3 = *n - i__;
- _starpu_dlarf_("Left", &i__2, &i__3, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[
- i__], &a[i__ + 1 + (i__ + 1) * a_dim1], lda, &work[1]);
- a[i__ + 1 + i__ * a_dim1] = aii;
- /* L10: */
- }
- return 0;
- /* End of DGEHD2 */
- } /* _starpu_dgehd2_ */
|