123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549 |
- /* dgegs.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static integer c_n1 = -1;
- static doublereal c_b36 = 0.;
- static doublereal c_b37 = 1.;
- /* Subroutine */ int _starpu_dgegs_(char *jobvsl, char *jobvsr, integer *n,
- doublereal *a, integer *lda, doublereal *b, integer *ldb, doublereal *
- alphar, doublereal *alphai, doublereal *beta, doublereal *vsl,
- integer *ldvsl, doublereal *vsr, integer *ldvsr, doublereal *work,
- integer *lwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset,
- vsr_dim1, vsr_offset, i__1, i__2;
- /* Local variables */
- integer nb, nb1, nb2, nb3, ihi, ilo;
- doublereal eps, anrm, bnrm;
- integer itau, lopt;
- extern logical _starpu_lsame_(char *, char *);
- integer ileft, iinfo, icols;
- logical ilvsl;
- integer iwork;
- logical ilvsr;
- integer irows;
- extern /* Subroutine */ int _starpu_dggbak_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, integer *), _starpu_dggbal_(char *, integer *,
- doublereal *, integer *, doublereal *, integer *, integer *,
- integer *, doublereal *, doublereal *, doublereal *, integer *);
- extern doublereal _starpu_dlamch_(char *), _starpu_dlange_(char *, integer *,
- integer *, doublereal *, integer *, doublereal *);
- extern /* Subroutine */ int _starpu_dgghrd_(char *, char *, integer *, integer *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, integer *, integer *), _starpu_dlascl_(char *, integer *, integer *, doublereal
- *, doublereal *, integer *, integer *, doublereal *, integer *,
- integer *);
- logical ilascl, ilbscl;
- extern /* Subroutine */ int _starpu_dgeqrf_(integer *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *, integer *),
- _starpu_dlacpy_(char *, integer *, integer *, doublereal *, integer *,
- doublereal *, integer *);
- doublereal safmin;
- extern /* Subroutine */ int _starpu_dlaset_(char *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, integer *),
- _starpu_xerbla_(char *, integer *);
- extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *);
- doublereal bignum;
- extern /* Subroutine */ int _starpu_dhgeqz_(char *, char *, char *, integer *,
- integer *, integer *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- integer *);
- integer ijobvl, iright, ijobvr;
- extern /* Subroutine */ int _starpu_dorgqr_(integer *, integer *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, integer *,
- integer *);
- doublereal anrmto;
- integer lwkmin;
- doublereal bnrmto;
- extern /* Subroutine */ int _starpu_dormqr_(char *, char *, integer *, integer *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, integer *);
- doublereal smlnum;
- integer lwkopt;
- logical lquery;
- /* -- LAPACK driver routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* This routine is deprecated and has been replaced by routine DGGES. */
- /* DGEGS computes the eigenvalues, real Schur form, and, optionally, */
- /* left and or/right Schur vectors of a real matrix pair (A,B). */
- /* Given two square matrices A and B, the generalized real Schur */
- /* factorization has the form */
- /* A = Q*S*Z**T, B = Q*T*Z**T */
- /* where Q and Z are orthogonal matrices, T is upper triangular, and S */
- /* is an upper quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal */
- /* blocks, the 2-by-2 blocks corresponding to complex conjugate pairs */
- /* of eigenvalues of (A,B). The columns of Q are the left Schur vectors */
- /* and the columns of Z are the right Schur vectors. */
- /* If only the eigenvalues of (A,B) are needed, the driver routine */
- /* DGEGV should be used instead. See DGEGV for a description of the */
- /* eigenvalues of the generalized nonsymmetric eigenvalue problem */
- /* (GNEP). */
- /* Arguments */
- /* ========= */
- /* JOBVSL (input) CHARACTER*1 */
- /* = 'N': do not compute the left Schur vectors; */
- /* = 'V': compute the left Schur vectors (returned in VSL). */
- /* JOBVSR (input) CHARACTER*1 */
- /* = 'N': do not compute the right Schur vectors; */
- /* = 'V': compute the right Schur vectors (returned in VSR). */
- /* N (input) INTEGER */
- /* The order of the matrices A, B, VSL, and VSR. N >= 0. */
- /* A (input/output) DOUBLE PRECISION array, dimension (LDA, N) */
- /* On entry, the matrix A. */
- /* On exit, the upper quasi-triangular matrix S from the */
- /* generalized real Schur factorization. */
- /* LDA (input) INTEGER */
- /* The leading dimension of A. LDA >= max(1,N). */
- /* B (input/output) DOUBLE PRECISION array, dimension (LDB, N) */
- /* On entry, the matrix B. */
- /* On exit, the upper triangular matrix T from the generalized */
- /* real Schur factorization. */
- /* LDB (input) INTEGER */
- /* The leading dimension of B. LDB >= max(1,N). */
- /* ALPHAR (output) DOUBLE PRECISION array, dimension (N) */
- /* The real parts of each scalar alpha defining an eigenvalue */
- /* of GNEP. */
- /* ALPHAI (output) DOUBLE PRECISION array, dimension (N) */
- /* The imaginary parts of each scalar alpha defining an */
- /* eigenvalue of GNEP. If ALPHAI(j) is zero, then the j-th */
- /* eigenvalue is real; if positive, then the j-th and (j+1)-st */
- /* eigenvalues are a complex conjugate pair, with */
- /* ALPHAI(j+1) = -ALPHAI(j). */
- /* BETA (output) DOUBLE PRECISION array, dimension (N) */
- /* The scalars beta that define the eigenvalues of GNEP. */
- /* Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and */
- /* beta = BETA(j) represent the j-th eigenvalue of the matrix */
- /* pair (A,B), in one of the forms lambda = alpha/beta or */
- /* mu = beta/alpha. Since either lambda or mu may overflow, */
- /* they should not, in general, be computed. */
- /* VSL (output) DOUBLE PRECISION array, dimension (LDVSL,N) */
- /* If JOBVSL = 'V', the matrix of left Schur vectors Q. */
- /* Not referenced if JOBVSL = 'N'. */
- /* LDVSL (input) INTEGER */
- /* The leading dimension of the matrix VSL. LDVSL >=1, and */
- /* if JOBVSL = 'V', LDVSL >= N. */
- /* VSR (output) DOUBLE PRECISION array, dimension (LDVSR,N) */
- /* If JOBVSR = 'V', the matrix of right Schur vectors Z. */
- /* Not referenced if JOBVSR = 'N'. */
- /* LDVSR (input) INTEGER */
- /* The leading dimension of the matrix VSR. LDVSR >= 1, and */
- /* if JOBVSR = 'V', LDVSR >= N. */
- /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
- /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* LWORK (input) INTEGER */
- /* The dimension of the array WORK. LWORK >= max(1,4*N). */
- /* For good performance, LWORK must generally be larger. */
- /* To compute the optimal value of LWORK, call ILAENV to get */
- /* blocksizes (for DGEQRF, DORMQR, and DORGQR.) Then compute: */
- /* NB -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR */
- /* The optimal LWORK is 2*N + N*(NB+1). */
- /* If LWORK = -1, then a workspace query is assumed; the routine */
- /* only calculates the optimal size of the WORK array, returns */
- /* this value as the first entry of the WORK array, and no error */
- /* message related to LWORK is issued by XERBLA. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* = 1,...,N: */
- /* The QZ iteration failed. (A,B) are not in Schur */
- /* form, but ALPHAR(j), ALPHAI(j), and BETA(j) should */
- /* be correct for j=INFO+1,...,N. */
- /* > N: errors that usually indicate LAPACK problems: */
- /* =N+1: error return from DGGBAL */
- /* =N+2: error return from DGEQRF */
- /* =N+3: error return from DORMQR */
- /* =N+4: error return from DORGQR */
- /* =N+5: error return from DGGHRD */
- /* =N+6: error return from DHGEQZ (other than failed */
- /* iteration) */
- /* =N+7: error return from DGGBAK (computing VSL) */
- /* =N+8: error return from DGGBAK (computing VSR) */
- /* =N+9: error return from DLASCL (various places) */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Decode the input arguments */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- --alphar;
- --alphai;
- --beta;
- vsl_dim1 = *ldvsl;
- vsl_offset = 1 + vsl_dim1;
- vsl -= vsl_offset;
- vsr_dim1 = *ldvsr;
- vsr_offset = 1 + vsr_dim1;
- vsr -= vsr_offset;
- --work;
- /* Function Body */
- if (_starpu_lsame_(jobvsl, "N")) {
- ijobvl = 1;
- ilvsl = FALSE_;
- } else if (_starpu_lsame_(jobvsl, "V")) {
- ijobvl = 2;
- ilvsl = TRUE_;
- } else {
- ijobvl = -1;
- ilvsl = FALSE_;
- }
- if (_starpu_lsame_(jobvsr, "N")) {
- ijobvr = 1;
- ilvsr = FALSE_;
- } else if (_starpu_lsame_(jobvsr, "V")) {
- ijobvr = 2;
- ilvsr = TRUE_;
- } else {
- ijobvr = -1;
- ilvsr = FALSE_;
- }
- /* Test the input arguments */
- /* Computing MAX */
- i__1 = *n << 2;
- lwkmin = max(i__1,1);
- lwkopt = lwkmin;
- work[1] = (doublereal) lwkopt;
- lquery = *lwork == -1;
- *info = 0;
- if (ijobvl <= 0) {
- *info = -1;
- } else if (ijobvr <= 0) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*lda < max(1,*n)) {
- *info = -5;
- } else if (*ldb < max(1,*n)) {
- *info = -7;
- } else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) {
- *info = -12;
- } else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) {
- *info = -14;
- } else if (*lwork < lwkmin && ! lquery) {
- *info = -16;
- }
- if (*info == 0) {
- nb1 = _starpu_ilaenv_(&c__1, "DGEQRF", " ", n, n, &c_n1, &c_n1);
- nb2 = _starpu_ilaenv_(&c__1, "DORMQR", " ", n, n, n, &c_n1);
- nb3 = _starpu_ilaenv_(&c__1, "DORGQR", " ", n, n, n, &c_n1);
- /* Computing MAX */
- i__1 = max(nb1,nb2);
- nb = max(i__1,nb3);
- lopt = (*n << 1) + *n * (nb + 1);
- work[1] = (doublereal) lopt;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DGEGS ", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0) {
- return 0;
- }
- /* Get machine constants */
- eps = _starpu_dlamch_("E") * _starpu_dlamch_("B");
- safmin = _starpu_dlamch_("S");
- smlnum = *n * safmin / eps;
- bignum = 1. / smlnum;
- /* Scale A if max element outside range [SMLNUM,BIGNUM] */
- anrm = _starpu_dlange_("M", n, n, &a[a_offset], lda, &work[1]);
- ilascl = FALSE_;
- if (anrm > 0. && anrm < smlnum) {
- anrmto = smlnum;
- ilascl = TRUE_;
- } else if (anrm > bignum) {
- anrmto = bignum;
- ilascl = TRUE_;
- }
- if (ilascl) {
- _starpu_dlascl_("G", &c_n1, &c_n1, &anrm, &anrmto, n, n, &a[a_offset], lda, &
- iinfo);
- if (iinfo != 0) {
- *info = *n + 9;
- return 0;
- }
- }
- /* Scale B if max element outside range [SMLNUM,BIGNUM] */
- bnrm = _starpu_dlange_("M", n, n, &b[b_offset], ldb, &work[1]);
- ilbscl = FALSE_;
- if (bnrm > 0. && bnrm < smlnum) {
- bnrmto = smlnum;
- ilbscl = TRUE_;
- } else if (bnrm > bignum) {
- bnrmto = bignum;
- ilbscl = TRUE_;
- }
- if (ilbscl) {
- _starpu_dlascl_("G", &c_n1, &c_n1, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
- iinfo);
- if (iinfo != 0) {
- *info = *n + 9;
- return 0;
- }
- }
- /* Permute the matrix to make it more nearly triangular */
- /* Workspace layout: (2*N words -- "work..." not actually used) */
- /* left_permutation, right_permutation, work... */
- ileft = 1;
- iright = *n + 1;
- iwork = iright + *n;
- _starpu_dggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[
- ileft], &work[iright], &work[iwork], &iinfo);
- if (iinfo != 0) {
- *info = *n + 1;
- goto L10;
- }
- /* Reduce B to triangular form, and initialize VSL and/or VSR */
- /* Workspace layout: ("work..." must have at least N words) */
- /* left_permutation, right_permutation, tau, work... */
- irows = ihi + 1 - ilo;
- icols = *n + 1 - ilo;
- itau = iwork;
- iwork = itau + irows;
- i__1 = *lwork + 1 - iwork;
- _starpu_dgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
- iwork], &i__1, &iinfo);
- if (iinfo >= 0) {
- /* Computing MAX */
- i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
- lwkopt = max(i__1,i__2);
- }
- if (iinfo != 0) {
- *info = *n + 2;
- goto L10;
- }
- i__1 = *lwork + 1 - iwork;
- _starpu_dormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
- work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwork], &i__1, &
- iinfo);
- if (iinfo >= 0) {
- /* Computing MAX */
- i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
- lwkopt = max(i__1,i__2);
- }
- if (iinfo != 0) {
- *info = *n + 3;
- goto L10;
- }
- if (ilvsl) {
- _starpu_dlaset_("Full", n, n, &c_b36, &c_b37, &vsl[vsl_offset], ldvsl);
- i__1 = irows - 1;
- i__2 = irows - 1;
- _starpu_dlacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vsl[ilo
- + 1 + ilo * vsl_dim1], ldvsl);
- i__1 = *lwork + 1 - iwork;
- _starpu_dorgqr_(&irows, &irows, &irows, &vsl[ilo + ilo * vsl_dim1], ldvsl, &
- work[itau], &work[iwork], &i__1, &iinfo);
- if (iinfo >= 0) {
- /* Computing MAX */
- i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
- lwkopt = max(i__1,i__2);
- }
- if (iinfo != 0) {
- *info = *n + 4;
- goto L10;
- }
- }
- if (ilvsr) {
- _starpu_dlaset_("Full", n, n, &c_b36, &c_b37, &vsr[vsr_offset], ldvsr);
- }
- /* Reduce to generalized Hessenberg form */
- _starpu_dgghrd_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset],
- ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &iinfo);
- if (iinfo != 0) {
- *info = *n + 5;
- goto L10;
- }
- /* Perform QZ algorithm, computing Schur vectors if desired */
- /* Workspace layout: ("work..." must have at least 1 word) */
- /* left_permutation, right_permutation, work... */
- iwork = itau;
- i__1 = *lwork + 1 - iwork;
- _starpu_dhgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[
- b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[vsl_offset]
- , ldvsl, &vsr[vsr_offset], ldvsr, &work[iwork], &i__1, &iinfo);
- if (iinfo >= 0) {
- /* Computing MAX */
- i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
- lwkopt = max(i__1,i__2);
- }
- if (iinfo != 0) {
- if (iinfo > 0 && iinfo <= *n) {
- *info = iinfo;
- } else if (iinfo > *n && iinfo <= *n << 1) {
- *info = iinfo - *n;
- } else {
- *info = *n + 6;
- }
- goto L10;
- }
- /* Apply permutation to VSL and VSR */
- if (ilvsl) {
- _starpu_dggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsl[
- vsl_offset], ldvsl, &iinfo);
- if (iinfo != 0) {
- *info = *n + 7;
- goto L10;
- }
- }
- if (ilvsr) {
- _starpu_dggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsr[
- vsr_offset], ldvsr, &iinfo);
- if (iinfo != 0) {
- *info = *n + 8;
- goto L10;
- }
- }
- /* Undo scaling */
- if (ilascl) {
- _starpu_dlascl_("H", &c_n1, &c_n1, &anrmto, &anrm, n, n, &a[a_offset], lda, &
- iinfo);
- if (iinfo != 0) {
- *info = *n + 9;
- return 0;
- }
- _starpu_dlascl_("G", &c_n1, &c_n1, &anrmto, &anrm, n, &c__1, &alphar[1], n, &
- iinfo);
- if (iinfo != 0) {
- *info = *n + 9;
- return 0;
- }
- _starpu_dlascl_("G", &c_n1, &c_n1, &anrmto, &anrm, n, &c__1, &alphai[1], n, &
- iinfo);
- if (iinfo != 0) {
- *info = *n + 9;
- return 0;
- }
- }
- if (ilbscl) {
- _starpu_dlascl_("U", &c_n1, &c_n1, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, &
- iinfo);
- if (iinfo != 0) {
- *info = *n + 9;
- return 0;
- }
- _starpu_dlascl_("G", &c_n1, &c_n1, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
- iinfo);
- if (iinfo != 0) {
- *info = *n + 9;
- return 0;
- }
- }
- L10:
- work[1] = (doublereal) lwkopt;
- return 0;
- /* End of DGEGS */
- } /* _starpu_dgegs_ */
|