123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297 |
- /* dgeequ.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Subroutine */ int _starpu_dgeequ_(integer *m, integer *n, doublereal *a, integer *
- lda, doublereal *r__, doublereal *c__, doublereal *rowcnd, doublereal
- *colcnd, doublereal *amax, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2;
- doublereal d__1, d__2, d__3;
- /* Local variables */
- integer i__, j;
- doublereal rcmin, rcmax;
- extern doublereal _starpu_dlamch_(char *);
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- doublereal bignum, smlnum;
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DGEEQU computes row and column scalings intended to equilibrate an */
- /* M-by-N matrix A and reduce its condition number. R returns the row */
- /* scale factors and C the column scale factors, chosen to try to make */
- /* the largest element in each row and column of the matrix B with */
- /* elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1. */
- /* R(i) and C(j) are restricted to be between SMLNUM = smallest safe */
- /* number and BIGNUM = largest safe number. Use of these scaling */
- /* factors is not guaranteed to reduce the condition number of A but */
- /* works well in practice. */
- /* Arguments */
- /* ========= */
- /* M (input) INTEGER */
- /* The number of rows of the matrix A. M >= 0. */
- /* N (input) INTEGER */
- /* The number of columns of the matrix A. N >= 0. */
- /* A (input) DOUBLE PRECISION array, dimension (LDA,N) */
- /* The M-by-N matrix whose equilibration factors are */
- /* to be computed. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,M). */
- /* R (output) DOUBLE PRECISION array, dimension (M) */
- /* If INFO = 0 or INFO > M, R contains the row scale factors */
- /* for A. */
- /* C (output) DOUBLE PRECISION array, dimension (N) */
- /* If INFO = 0, C contains the column scale factors for A. */
- /* ROWCND (output) DOUBLE PRECISION */
- /* If INFO = 0 or INFO > M, ROWCND contains the ratio of the */
- /* smallest R(i) to the largest R(i). If ROWCND >= 0.1 and */
- /* AMAX is neither too large nor too small, it is not worth */
- /* scaling by R. */
- /* COLCND (output) DOUBLE PRECISION */
- /* If INFO = 0, COLCND contains the ratio of the smallest */
- /* C(i) to the largest C(i). If COLCND >= 0.1, it is not */
- /* worth scaling by C. */
- /* AMAX (output) DOUBLE PRECISION */
- /* Absolute value of largest matrix element. If AMAX is very */
- /* close to overflow or very close to underflow, the matrix */
- /* should be scaled. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > 0: if INFO = i, and i is */
- /* <= M: the i-th row of A is exactly zero */
- /* > M: the (i-M)-th column of A is exactly zero */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- --r__;
- --c__;
- /* Function Body */
- *info = 0;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*m)) {
- *info = -4;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DGEEQU", &i__1);
- return 0;
- }
- /* Quick return if possible */
- if (*m == 0 || *n == 0) {
- *rowcnd = 1.;
- *colcnd = 1.;
- *amax = 0.;
- return 0;
- }
- /* Get machine constants. */
- smlnum = _starpu_dlamch_("S");
- bignum = 1. / smlnum;
- /* Compute row scale factors. */
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- r__[i__] = 0.;
- /* L10: */
- }
- /* Find the maximum element in each row. */
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- /* Computing MAX */
- d__2 = r__[i__], d__3 = (d__1 = a[i__ + j * a_dim1], abs(d__1));
- r__[i__] = max(d__2,d__3);
- /* L20: */
- }
- /* L30: */
- }
- /* Find the maximum and minimum scale factors. */
- rcmin = bignum;
- rcmax = 0.;
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- /* Computing MAX */
- d__1 = rcmax, d__2 = r__[i__];
- rcmax = max(d__1,d__2);
- /* Computing MIN */
- d__1 = rcmin, d__2 = r__[i__];
- rcmin = min(d__1,d__2);
- /* L40: */
- }
- *amax = rcmax;
- if (rcmin == 0.) {
- /* Find the first zero scale factor and return an error code. */
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (r__[i__] == 0.) {
- *info = i__;
- return 0;
- }
- /* L50: */
- }
- } else {
- /* Invert the scale factors. */
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- /* Computing MIN */
- /* Computing MAX */
- d__2 = r__[i__];
- d__1 = max(d__2,smlnum);
- r__[i__] = 1. / min(d__1,bignum);
- /* L60: */
- }
- /* Compute ROWCND = min(R(I)) / max(R(I)) */
- *rowcnd = max(rcmin,smlnum) / min(rcmax,bignum);
- }
- /* Compute column scale factors */
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- c__[j] = 0.;
- /* L70: */
- }
- /* Find the maximum element in each column, */
- /* assuming the row scaling computed above. */
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *m;
- for (i__ = 1; i__ <= i__2; ++i__) {
- /* Computing MAX */
- d__2 = c__[j], d__3 = (d__1 = a[i__ + j * a_dim1], abs(d__1)) *
- r__[i__];
- c__[j] = max(d__2,d__3);
- /* L80: */
- }
- /* L90: */
- }
- /* Find the maximum and minimum scale factors. */
- rcmin = bignum;
- rcmax = 0.;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- /* Computing MIN */
- d__1 = rcmin, d__2 = c__[j];
- rcmin = min(d__1,d__2);
- /* Computing MAX */
- d__1 = rcmax, d__2 = c__[j];
- rcmax = max(d__1,d__2);
- /* L100: */
- }
- if (rcmin == 0.) {
- /* Find the first zero scale factor and return an error code. */
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (c__[j] == 0.) {
- *info = *m + j;
- return 0;
- }
- /* L110: */
- }
- } else {
- /* Invert the scale factors. */
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- /* Computing MIN */
- /* Computing MAX */
- d__2 = c__[j];
- d__1 = max(d__2,smlnum);
- c__[j] = 1. / min(d__1,bignum);
- /* L120: */
- }
- /* Compute COLCND = min(C(J)) / max(C(J)) */
- *colcnd = max(rcmin,smlnum) / min(rcmax,bignum);
- }
- return 0;
- /* End of DGEEQU */
- } /* _starpu_dgeequ_ */
|