123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337 |
- /* dgebrd.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static integer c_n1 = -1;
- static integer c__3 = 3;
- static integer c__2 = 2;
- static doublereal c_b21 = -1.;
- static doublereal c_b22 = 1.;
- /* Subroutine */ int _starpu_dgebrd_(integer *m, integer *n, doublereal *a, integer *
- lda, doublereal *d__, doublereal *e, doublereal *tauq, doublereal *
- taup, doublereal *work, integer *lwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
- /* Local variables */
- integer i__, j, nb, nx;
- doublereal ws;
- extern /* Subroutine */ int _starpu_dgemm_(char *, char *, integer *, integer *,
- integer *, doublereal *, doublereal *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, integer *);
- integer nbmin, iinfo, minmn;
- extern /* Subroutine */ int _starpu_dgebd2_(integer *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *, integer *), _starpu_dlabrd_(integer *, integer *, integer *
- , doublereal *, integer *, doublereal *, doublereal *, doublereal
- *, doublereal *, doublereal *, integer *, doublereal *, integer *)
- , _starpu_xerbla_(char *, integer *);
- extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *);
- integer ldwrkx, ldwrky, lwkopt;
- logical lquery;
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DGEBRD reduces a general real M-by-N matrix A to upper or lower */
- /* bidiagonal form B by an orthogonal transformation: Q**T * A * P = B. */
- /* If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal. */
- /* Arguments */
- /* ========= */
- /* M (input) INTEGER */
- /* The number of rows in the matrix A. M >= 0. */
- /* N (input) INTEGER */
- /* The number of columns in the matrix A. N >= 0. */
- /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
- /* On entry, the M-by-N general matrix to be reduced. */
- /* On exit, */
- /* if m >= n, the diagonal and the first superdiagonal are */
- /* overwritten with the upper bidiagonal matrix B; the */
- /* elements below the diagonal, with the array TAUQ, represent */
- /* the orthogonal matrix Q as a product of elementary */
- /* reflectors, and the elements above the first superdiagonal, */
- /* with the array TAUP, represent the orthogonal matrix P as */
- /* a product of elementary reflectors; */
- /* if m < n, the diagonal and the first subdiagonal are */
- /* overwritten with the lower bidiagonal matrix B; the */
- /* elements below the first subdiagonal, with the array TAUQ, */
- /* represent the orthogonal matrix Q as a product of */
- /* elementary reflectors, and the elements above the diagonal, */
- /* with the array TAUP, represent the orthogonal matrix P as */
- /* a product of elementary reflectors. */
- /* See Further Details. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,M). */
- /* D (output) DOUBLE PRECISION array, dimension (min(M,N)) */
- /* The diagonal elements of the bidiagonal matrix B: */
- /* D(i) = A(i,i). */
- /* E (output) DOUBLE PRECISION array, dimension (min(M,N)-1) */
- /* The off-diagonal elements of the bidiagonal matrix B: */
- /* if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1; */
- /* if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1. */
- /* TAUQ (output) DOUBLE PRECISION array dimension (min(M,N)) */
- /* The scalar factors of the elementary reflectors which */
- /* represent the orthogonal matrix Q. See Further Details. */
- /* TAUP (output) DOUBLE PRECISION array, dimension (min(M,N)) */
- /* The scalar factors of the elementary reflectors which */
- /* represent the orthogonal matrix P. See Further Details. */
- /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
- /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* LWORK (input) INTEGER */
- /* The length of the array WORK. LWORK >= max(1,M,N). */
- /* For optimum performance LWORK >= (M+N)*NB, where NB */
- /* is the optimal blocksize. */
- /* If LWORK = -1, then a workspace query is assumed; the routine */
- /* only calculates the optimal size of the WORK array, returns */
- /* this value as the first entry of the WORK array, and no error */
- /* message related to LWORK is issued by XERBLA. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* Further Details */
- /* =============== */
- /* The matrices Q and P are represented as products of elementary */
- /* reflectors: */
- /* If m >= n, */
- /* Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1) */
- /* Each H(i) and G(i) has the form: */
- /* H(i) = I - tauq * v * v' and G(i) = I - taup * u * u' */
- /* where tauq and taup are real scalars, and v and u are real vectors; */
- /* v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i); */
- /* u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n); */
- /* tauq is stored in TAUQ(i) and taup in TAUP(i). */
- /* If m < n, */
- /* Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m) */
- /* Each H(i) and G(i) has the form: */
- /* H(i) = I - tauq * v * v' and G(i) = I - taup * u * u' */
- /* where tauq and taup are real scalars, and v and u are real vectors; */
- /* v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i); */
- /* u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n); */
- /* tauq is stored in TAUQ(i) and taup in TAUP(i). */
- /* The contents of A on exit are illustrated by the following examples: */
- /* m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): */
- /* ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 ) */
- /* ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 ) */
- /* ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 ) */
- /* ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 ) */
- /* ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 ) */
- /* ( v1 v2 v3 v4 v5 ) */
- /* where d and e denote diagonal and off-diagonal elements of B, vi */
- /* denotes an element of the vector defining H(i), and ui an element of */
- /* the vector defining G(i). */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- --d__;
- --e;
- --tauq;
- --taup;
- --work;
- /* Function Body */
- *info = 0;
- /* Computing MAX */
- i__1 = 1, i__2 = _starpu_ilaenv_(&c__1, "DGEBRD", " ", m, n, &c_n1, &c_n1);
- nb = max(i__1,i__2);
- lwkopt = (*m + *n) * nb;
- work[1] = (doublereal) lwkopt;
- lquery = *lwork == -1;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*m)) {
- *info = -4;
- } else /* if(complicated condition) */ {
- /* Computing MAX */
- i__1 = max(1,*m);
- if (*lwork < max(i__1,*n) && ! lquery) {
- *info = -10;
- }
- }
- if (*info < 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DGEBRD", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
- /* Quick return if possible */
- minmn = min(*m,*n);
- if (minmn == 0) {
- work[1] = 1.;
- return 0;
- }
- ws = (doublereal) max(*m,*n);
- ldwrkx = *m;
- ldwrky = *n;
- if (nb > 1 && nb < minmn) {
- /* Set the crossover point NX. */
- /* Computing MAX */
- i__1 = nb, i__2 = _starpu_ilaenv_(&c__3, "DGEBRD", " ", m, n, &c_n1, &c_n1);
- nx = max(i__1,i__2);
- /* Determine when to switch from blocked to unblocked code. */
- if (nx < minmn) {
- ws = (doublereal) ((*m + *n) * nb);
- if ((doublereal) (*lwork) < ws) {
- /* Not enough work space for the optimal NB, consider using */
- /* a smaller block size. */
- nbmin = _starpu_ilaenv_(&c__2, "DGEBRD", " ", m, n, &c_n1, &c_n1);
- if (*lwork >= (*m + *n) * nbmin) {
- nb = *lwork / (*m + *n);
- } else {
- nb = 1;
- nx = minmn;
- }
- }
- }
- } else {
- nx = minmn;
- }
- i__1 = minmn - nx;
- i__2 = nb;
- for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
- /* Reduce rows and columns i:i+nb-1 to bidiagonal form and return */
- /* the matrices X and Y which are needed to update the unreduced */
- /* part of the matrix */
- i__3 = *m - i__ + 1;
- i__4 = *n - i__ + 1;
- _starpu_dlabrd_(&i__3, &i__4, &nb, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[
- i__], &tauq[i__], &taup[i__], &work[1], &ldwrkx, &work[ldwrkx
- * nb + 1], &ldwrky);
- /* Update the trailing submatrix A(i+nb:m,i+nb:n), using an update */
- /* of the form A := A - V*Y' - X*U' */
- i__3 = *m - i__ - nb + 1;
- i__4 = *n - i__ - nb + 1;
- _starpu_dgemm_("No transpose", "Transpose", &i__3, &i__4, &nb, &c_b21, &a[i__
- + nb + i__ * a_dim1], lda, &work[ldwrkx * nb + nb + 1], &
- ldwrky, &c_b22, &a[i__ + nb + (i__ + nb) * a_dim1], lda);
- i__3 = *m - i__ - nb + 1;
- i__4 = *n - i__ - nb + 1;
- _starpu_dgemm_("No transpose", "No transpose", &i__3, &i__4, &nb, &c_b21, &
- work[nb + 1], &ldwrkx, &a[i__ + (i__ + nb) * a_dim1], lda, &
- c_b22, &a[i__ + nb + (i__ + nb) * a_dim1], lda);
- /* Copy diagonal and off-diagonal elements of B back into A */
- if (*m >= *n) {
- i__3 = i__ + nb - 1;
- for (j = i__; j <= i__3; ++j) {
- a[j + j * a_dim1] = d__[j];
- a[j + (j + 1) * a_dim1] = e[j];
- /* L10: */
- }
- } else {
- i__3 = i__ + nb - 1;
- for (j = i__; j <= i__3; ++j) {
- a[j + j * a_dim1] = d__[j];
- a[j + 1 + j * a_dim1] = e[j];
- /* L20: */
- }
- }
- /* L30: */
- }
- /* Use unblocked code to reduce the remainder of the matrix */
- i__2 = *m - i__ + 1;
- i__1 = *n - i__ + 1;
- _starpu_dgebd2_(&i__2, &i__1, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[i__], &
- tauq[i__], &taup[i__], &work[1], &iinfo);
- work[1] = ws;
- return 0;
- /* End of DGEBRD */
- } /* _starpu_dgebrd_ */
|