123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651 |
- /* dgbsvx.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- /* Subroutine */ int _starpu_dgbsvx_(char *fact, char *trans, integer *n, integer *kl,
- integer *ku, integer *nrhs, doublereal *ab, integer *ldab,
- doublereal *afb, integer *ldafb, integer *ipiv, char *equed,
- doublereal *r__, doublereal *c__, doublereal *b, integer *ldb,
- doublereal *x, integer *ldx, doublereal *rcond, doublereal *ferr,
- doublereal *berr, doublereal *work, integer *iwork, integer *info)
- {
- /* System generated locals */
- integer ab_dim1, ab_offset, afb_dim1, afb_offset, b_dim1, b_offset,
- x_dim1, x_offset, i__1, i__2, i__3, i__4, i__5;
- doublereal d__1, d__2, d__3;
- /* Local variables */
- integer i__, j, j1, j2;
- doublereal amax;
- char norm[1];
- extern logical _starpu_lsame_(char *, char *);
- doublereal rcmin, rcmax, anorm;
- extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- logical equil;
- extern doublereal _starpu_dlangb_(char *, integer *, integer *, integer *,
- doublereal *, integer *, doublereal *), _starpu_dlamch_(char *);
- extern /* Subroutine */ int _starpu_dlaqgb_(integer *, integer *, integer *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, char *),
- _starpu_dgbcon_(char *, integer *, integer *, integer *, doublereal *,
- integer *, integer *, doublereal *, doublereal *, doublereal *,
- integer *, integer *);
- doublereal colcnd;
- extern doublereal _starpu_dlantb_(char *, char *, char *, integer *, integer *,
- doublereal *, integer *, doublereal *);
- extern /* Subroutine */ int _starpu_dgbequ_(integer *, integer *, integer *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- doublereal *, doublereal *, doublereal *, integer *), _starpu_dgbrfs_(
- char *, integer *, integer *, integer *, integer *, doublereal *,
- integer *, doublereal *, integer *, integer *, doublereal *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- doublereal *, integer *, integer *), _starpu_dgbtrf_(integer *,
- integer *, integer *, integer *, doublereal *, integer *, integer
- *, integer *);
- logical nofact;
- extern /* Subroutine */ int _starpu_dlacpy_(char *, integer *, integer *,
- doublereal *, integer *, doublereal *, integer *),
- _starpu_xerbla_(char *, integer *);
- doublereal bignum;
- extern /* Subroutine */ int _starpu_dgbtrs_(char *, integer *, integer *, integer
- *, integer *, doublereal *, integer *, integer *, doublereal *,
- integer *, integer *);
- integer infequ;
- logical colequ;
- doublereal rowcnd;
- logical notran;
- doublereal smlnum;
- logical rowequ;
- doublereal rpvgrw;
- /* -- LAPACK driver routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DGBSVX uses the LU factorization to compute the solution to a real */
- /* system of linear equations A * X = B, A**T * X = B, or A**H * X = B, */
- /* where A is a band matrix of order N with KL subdiagonals and KU */
- /* superdiagonals, and X and B are N-by-NRHS matrices. */
- /* Error bounds on the solution and a condition estimate are also */
- /* provided. */
- /* Description */
- /* =========== */
- /* The following steps are performed by this subroutine: */
- /* 1. If FACT = 'E', real scaling factors are computed to equilibrate */
- /* the system: */
- /* TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B */
- /* TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B */
- /* TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B */
- /* Whether or not the system will be equilibrated depends on the */
- /* scaling of the matrix A, but if equilibration is used, A is */
- /* overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N') */
- /* or diag(C)*B (if TRANS = 'T' or 'C'). */
- /* 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the */
- /* matrix A (after equilibration if FACT = 'E') as */
- /* A = L * U, */
- /* where L is a product of permutation and unit lower triangular */
- /* matrices with KL subdiagonals, and U is upper triangular with */
- /* KL+KU superdiagonals. */
- /* 3. If some U(i,i)=0, so that U is exactly singular, then the routine */
- /* returns with INFO = i. Otherwise, the factored form of A is used */
- /* to estimate the condition number of the matrix A. If the */
- /* reciprocal of the condition number is less than machine precision, */
- /* INFO = N+1 is returned as a warning, but the routine still goes on */
- /* to solve for X and compute error bounds as described below. */
- /* 4. The system of equations is solved for X using the factored form */
- /* of A. */
- /* 5. Iterative refinement is applied to improve the computed solution */
- /* matrix and calculate error bounds and backward error estimates */
- /* for it. */
- /* 6. If equilibration was used, the matrix X is premultiplied by */
- /* diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so */
- /* that it solves the original system before equilibration. */
- /* Arguments */
- /* ========= */
- /* FACT (input) CHARACTER*1 */
- /* Specifies whether or not the factored form of the matrix A is */
- /* supplied on entry, and if not, whether the matrix A should be */
- /* equilibrated before it is factored. */
- /* = 'F': On entry, AFB and IPIV contain the factored form of */
- /* A. If EQUED is not 'N', the matrix A has been */
- /* equilibrated with scaling factors given by R and C. */
- /* AB, AFB, and IPIV are not modified. */
- /* = 'N': The matrix A will be copied to AFB and factored. */
- /* = 'E': The matrix A will be equilibrated if necessary, then */
- /* copied to AFB and factored. */
- /* TRANS (input) CHARACTER*1 */
- /* Specifies the form of the system of equations. */
- /* = 'N': A * X = B (No transpose) */
- /* = 'T': A**T * X = B (Transpose) */
- /* = 'C': A**H * X = B (Transpose) */
- /* N (input) INTEGER */
- /* The number of linear equations, i.e., the order of the */
- /* matrix A. N >= 0. */
- /* KL (input) INTEGER */
- /* The number of subdiagonals within the band of A. KL >= 0. */
- /* KU (input) INTEGER */
- /* The number of superdiagonals within the band of A. KU >= 0. */
- /* NRHS (input) INTEGER */
- /* The number of right hand sides, i.e., the number of columns */
- /* of the matrices B and X. NRHS >= 0. */
- /* AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N) */
- /* On entry, the matrix A in band storage, in rows 1 to KL+KU+1. */
- /* The j-th column of A is stored in the j-th column of the */
- /* array AB as follows: */
- /* AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl) */
- /* If FACT = 'F' and EQUED is not 'N', then A must have been */
- /* equilibrated by the scaling factors in R and/or C. AB is not */
- /* modified if FACT = 'F' or 'N', or if FACT = 'E' and */
- /* EQUED = 'N' on exit. */
- /* On exit, if EQUED .ne. 'N', A is scaled as follows: */
- /* EQUED = 'R': A := diag(R) * A */
- /* EQUED = 'C': A := A * diag(C) */
- /* EQUED = 'B': A := diag(R) * A * diag(C). */
- /* LDAB (input) INTEGER */
- /* The leading dimension of the array AB. LDAB >= KL+KU+1. */
- /* AFB (input or output) DOUBLE PRECISION array, dimension (LDAFB,N) */
- /* If FACT = 'F', then AFB is an input argument and on entry */
- /* contains details of the LU factorization of the band matrix */
- /* A, as computed by DGBTRF. U is stored as an upper triangular */
- /* band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, */
- /* and the multipliers used during the factorization are stored */
- /* in rows KL+KU+2 to 2*KL+KU+1. If EQUED .ne. 'N', then AFB is */
- /* the factored form of the equilibrated matrix A. */
- /* If FACT = 'N', then AFB is an output argument and on exit */
- /* returns details of the LU factorization of A. */
- /* If FACT = 'E', then AFB is an output argument and on exit */
- /* returns details of the LU factorization of the equilibrated */
- /* matrix A (see the description of AB for the form of the */
- /* equilibrated matrix). */
- /* LDAFB (input) INTEGER */
- /* The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1. */
- /* IPIV (input or output) INTEGER array, dimension (N) */
- /* If FACT = 'F', then IPIV is an input argument and on entry */
- /* contains the pivot indices from the factorization A = L*U */
- /* as computed by DGBTRF; row i of the matrix was interchanged */
- /* with row IPIV(i). */
- /* If FACT = 'N', then IPIV is an output argument and on exit */
- /* contains the pivot indices from the factorization A = L*U */
- /* of the original matrix A. */
- /* If FACT = 'E', then IPIV is an output argument and on exit */
- /* contains the pivot indices from the factorization A = L*U */
- /* of the equilibrated matrix A. */
- /* EQUED (input or output) CHARACTER*1 */
- /* Specifies the form of equilibration that was done. */
- /* = 'N': No equilibration (always true if FACT = 'N'). */
- /* = 'R': Row equilibration, i.e., A has been premultiplied by */
- /* diag(R). */
- /* = 'C': Column equilibration, i.e., A has been postmultiplied */
- /* by diag(C). */
- /* = 'B': Both row and column equilibration, i.e., A has been */
- /* replaced by diag(R) * A * diag(C). */
- /* EQUED is an input argument if FACT = 'F'; otherwise, it is an */
- /* output argument. */
- /* R (input or output) DOUBLE PRECISION array, dimension (N) */
- /* The row scale factors for A. If EQUED = 'R' or 'B', A is */
- /* multiplied on the left by diag(R); if EQUED = 'N' or 'C', R */
- /* is not accessed. R is an input argument if FACT = 'F'; */
- /* otherwise, R is an output argument. If FACT = 'F' and */
- /* EQUED = 'R' or 'B', each element of R must be positive. */
- /* C (input or output) DOUBLE PRECISION array, dimension (N) */
- /* The column scale factors for A. If EQUED = 'C' or 'B', A is */
- /* multiplied on the right by diag(C); if EQUED = 'N' or 'R', C */
- /* is not accessed. C is an input argument if FACT = 'F'; */
- /* otherwise, C is an output argument. If FACT = 'F' and */
- /* EQUED = 'C' or 'B', each element of C must be positive. */
- /* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
- /* On entry, the right hand side matrix B. */
- /* On exit, */
- /* if EQUED = 'N', B is not modified; */
- /* if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by */
- /* diag(R)*B; */
- /* if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is */
- /* overwritten by diag(C)*B. */
- /* LDB (input) INTEGER */
- /* The leading dimension of the array B. LDB >= max(1,N). */
- /* X (output) DOUBLE PRECISION array, dimension (LDX,NRHS) */
- /* If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X */
- /* to the original system of equations. Note that A and B are */
- /* modified on exit if EQUED .ne. 'N', and the solution to the */
- /* equilibrated system is inv(diag(C))*X if TRANS = 'N' and */
- /* EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C' */
- /* and EQUED = 'R' or 'B'. */
- /* LDX (input) INTEGER */
- /* The leading dimension of the array X. LDX >= max(1,N). */
- /* RCOND (output) DOUBLE PRECISION */
- /* The estimate of the reciprocal condition number of the matrix */
- /* A after equilibration (if done). If RCOND is less than the */
- /* machine precision (in particular, if RCOND = 0), the matrix */
- /* is singular to working precision. This condition is */
- /* indicated by a return code of INFO > 0. */
- /* FERR (output) DOUBLE PRECISION array, dimension (NRHS) */
- /* The estimated forward error bound for each solution vector */
- /* X(j) (the j-th column of the solution matrix X). */
- /* If XTRUE is the true solution corresponding to X(j), FERR(j) */
- /* is an estimated upper bound for the magnitude of the largest */
- /* element in (X(j) - XTRUE) divided by the magnitude of the */
- /* largest element in X(j). The estimate is as reliable as */
- /* the estimate for RCOND, and is almost always a slight */
- /* overestimate of the true error. */
- /* BERR (output) DOUBLE PRECISION array, dimension (NRHS) */
- /* The componentwise relative backward error of each solution */
- /* vector X(j) (i.e., the smallest relative change in */
- /* any element of A or B that makes X(j) an exact solution). */
- /* WORK (workspace/output) DOUBLE PRECISION array, dimension (3*N) */
- /* On exit, WORK(1) contains the reciprocal pivot growth */
- /* factor norm(A)/norm(U). The "max absolute element" norm is */
- /* used. If WORK(1) is much less than 1, then the stability */
- /* of the LU factorization of the (equilibrated) matrix A */
- /* could be poor. This also means that the solution X, condition */
- /* estimator RCOND, and forward error bound FERR could be */
- /* unreliable. If factorization fails with 0<INFO<=N, then */
- /* WORK(1) contains the reciprocal pivot growth factor for the */
- /* leading INFO columns of A. */
- /* IWORK (workspace) INTEGER array, dimension (N) */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > 0: if INFO = i, and i is */
- /* <= N: U(i,i) is exactly zero. The factorization */
- /* has been completed, but the factor U is exactly */
- /* singular, so the solution and error bounds */
- /* could not be computed. RCOND = 0 is returned. */
- /* = N+1: U is nonsingular, but RCOND is less than machine */
- /* precision, meaning that the matrix is singular */
- /* to working precision. Nevertheless, the */
- /* solution and error bounds are computed because */
- /* there are a number of situations where the */
- /* computed solution can be more accurate than the */
- /* value of RCOND would suggest. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Parameter adjustments */
- ab_dim1 = *ldab;
- ab_offset = 1 + ab_dim1;
- ab -= ab_offset;
- afb_dim1 = *ldafb;
- afb_offset = 1 + afb_dim1;
- afb -= afb_offset;
- --ipiv;
- --r__;
- --c__;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1;
- b -= b_offset;
- x_dim1 = *ldx;
- x_offset = 1 + x_dim1;
- x -= x_offset;
- --ferr;
- --berr;
- --work;
- --iwork;
- /* Function Body */
- *info = 0;
- nofact = _starpu_lsame_(fact, "N");
- equil = _starpu_lsame_(fact, "E");
- notran = _starpu_lsame_(trans, "N");
- if (nofact || equil) {
- *(unsigned char *)equed = 'N';
- rowequ = FALSE_;
- colequ = FALSE_;
- } else {
- rowequ = _starpu_lsame_(equed, "R") || _starpu_lsame_(equed,
- "B");
- colequ = _starpu_lsame_(equed, "C") || _starpu_lsame_(equed,
- "B");
- smlnum = _starpu_dlamch_("Safe minimum");
- bignum = 1. / smlnum;
- }
- /* Test the input parameters. */
- if (! nofact && ! equil && ! _starpu_lsame_(fact, "F")) {
- *info = -1;
- } else if (! notran && ! _starpu_lsame_(trans, "T") && !
- _starpu_lsame_(trans, "C")) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*kl < 0) {
- *info = -4;
- } else if (*ku < 0) {
- *info = -5;
- } else if (*nrhs < 0) {
- *info = -6;
- } else if (*ldab < *kl + *ku + 1) {
- *info = -8;
- } else if (*ldafb < (*kl << 1) + *ku + 1) {
- *info = -10;
- } else if (_starpu_lsame_(fact, "F") && ! (rowequ || colequ
- || _starpu_lsame_(equed, "N"))) {
- *info = -12;
- } else {
- if (rowequ) {
- rcmin = bignum;
- rcmax = 0.;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- /* Computing MIN */
- d__1 = rcmin, d__2 = r__[j];
- rcmin = min(d__1,d__2);
- /* Computing MAX */
- d__1 = rcmax, d__2 = r__[j];
- rcmax = max(d__1,d__2);
- /* L10: */
- }
- if (rcmin <= 0.) {
- *info = -13;
- } else if (*n > 0) {
- rowcnd = max(rcmin,smlnum) / min(rcmax,bignum);
- } else {
- rowcnd = 1.;
- }
- }
- if (colequ && *info == 0) {
- rcmin = bignum;
- rcmax = 0.;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- /* Computing MIN */
- d__1 = rcmin, d__2 = c__[j];
- rcmin = min(d__1,d__2);
- /* Computing MAX */
- d__1 = rcmax, d__2 = c__[j];
- rcmax = max(d__1,d__2);
- /* L20: */
- }
- if (rcmin <= 0.) {
- *info = -14;
- } else if (*n > 0) {
- colcnd = max(rcmin,smlnum) / min(rcmax,bignum);
- } else {
- colcnd = 1.;
- }
- }
- if (*info == 0) {
- if (*ldb < max(1,*n)) {
- *info = -16;
- } else if (*ldx < max(1,*n)) {
- *info = -18;
- }
- }
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DGBSVX", &i__1);
- return 0;
- }
- if (equil) {
- /* Compute row and column scalings to equilibrate the matrix A. */
- _starpu_dgbequ_(n, n, kl, ku, &ab[ab_offset], ldab, &r__[1], &c__[1], &rowcnd,
- &colcnd, &amax, &infequ);
- if (infequ == 0) {
- /* Equilibrate the matrix. */
- _starpu_dlaqgb_(n, n, kl, ku, &ab[ab_offset], ldab, &r__[1], &c__[1], &
- rowcnd, &colcnd, &amax, equed);
- rowequ = _starpu_lsame_(equed, "R") || _starpu_lsame_(equed,
- "B");
- colequ = _starpu_lsame_(equed, "C") || _starpu_lsame_(equed,
- "B");
- }
- }
- /* Scale the right hand side. */
- if (notran) {
- if (rowequ) {
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] = r__[i__] * b[i__ + j * b_dim1];
- /* L30: */
- }
- /* L40: */
- }
- }
- } else if (colequ) {
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- i__2 = *n;
- for (i__ = 1; i__ <= i__2; ++i__) {
- b[i__ + j * b_dim1] = c__[i__] * b[i__ + j * b_dim1];
- /* L50: */
- }
- /* L60: */
- }
- }
- if (nofact || equil) {
- /* Compute the LU factorization of the band matrix A. */
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- /* Computing MAX */
- i__2 = j - *ku;
- j1 = max(i__2,1);
- /* Computing MIN */
- i__2 = j + *kl;
- j2 = min(i__2,*n);
- i__2 = j2 - j1 + 1;
- _starpu_dcopy_(&i__2, &ab[*ku + 1 - j + j1 + j * ab_dim1], &c__1, &afb[*
- kl + *ku + 1 - j + j1 + j * afb_dim1], &c__1);
- /* L70: */
- }
- _starpu_dgbtrf_(n, n, kl, ku, &afb[afb_offset], ldafb, &ipiv[1], info);
- /* Return if INFO is non-zero. */
- if (*info > 0) {
- /* Compute the reciprocal pivot growth factor of the */
- /* leading rank-deficient INFO columns of A. */
- anorm = 0.;
- i__1 = *info;
- for (j = 1; j <= i__1; ++j) {
- /* Computing MAX */
- i__2 = *ku + 2 - j;
- /* Computing MIN */
- i__4 = *n + *ku + 1 - j, i__5 = *kl + *ku + 1;
- i__3 = min(i__4,i__5);
- for (i__ = max(i__2,1); i__ <= i__3; ++i__) {
- /* Computing MAX */
- d__2 = anorm, d__3 = (d__1 = ab[i__ + j * ab_dim1], abs(
- d__1));
- anorm = max(d__2,d__3);
- /* L80: */
- }
- /* L90: */
- }
- /* Computing MIN */
- i__3 = *info - 1, i__2 = *kl + *ku;
- i__1 = min(i__3,i__2);
- /* Computing MAX */
- i__4 = 1, i__5 = *kl + *ku + 2 - *info;
- rpvgrw = _starpu_dlantb_("M", "U", "N", info, &i__1, &afb[max(i__4, i__5)
- + afb_dim1], ldafb, &work[1]);
- if (rpvgrw == 0.) {
- rpvgrw = 1.;
- } else {
- rpvgrw = anorm / rpvgrw;
- }
- work[1] = rpvgrw;
- *rcond = 0.;
- return 0;
- }
- }
- /* Compute the norm of the matrix A and the */
- /* reciprocal pivot growth factor RPVGRW. */
- if (notran) {
- *(unsigned char *)norm = '1';
- } else {
- *(unsigned char *)norm = 'I';
- }
- anorm = _starpu_dlangb_(norm, n, kl, ku, &ab[ab_offset], ldab, &work[1]);
- i__1 = *kl + *ku;
- rpvgrw = _starpu_dlantb_("M", "U", "N", n, &i__1, &afb[afb_offset], ldafb, &work[
- 1]);
- if (rpvgrw == 0.) {
- rpvgrw = 1.;
- } else {
- rpvgrw = _starpu_dlangb_("M", n, kl, ku, &ab[ab_offset], ldab, &work[1]) / rpvgrw;
- }
- /* Compute the reciprocal of the condition number of A. */
- _starpu_dgbcon_(norm, n, kl, ku, &afb[afb_offset], ldafb, &ipiv[1], &anorm, rcond,
- &work[1], &iwork[1], info);
- /* Compute the solution matrix X. */
- _starpu_dlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
- _starpu_dgbtrs_(trans, n, kl, ku, nrhs, &afb[afb_offset], ldafb, &ipiv[1], &x[
- x_offset], ldx, info);
- /* Use iterative refinement to improve the computed solution and */
- /* compute error bounds and backward error estimates for it. */
- _starpu_dgbrfs_(trans, n, kl, ku, nrhs, &ab[ab_offset], ldab, &afb[afb_offset],
- ldafb, &ipiv[1], &b[b_offset], ldb, &x[x_offset], ldx, &ferr[1], &
- berr[1], &work[1], &iwork[1], info);
- /* Transform the solution matrix X to a solution of the original */
- /* system. */
- if (notran) {
- if (colequ) {
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- i__3 = *n;
- for (i__ = 1; i__ <= i__3; ++i__) {
- x[i__ + j * x_dim1] = c__[i__] * x[i__ + j * x_dim1];
- /* L100: */
- }
- /* L110: */
- }
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- ferr[j] /= colcnd;
- /* L120: */
- }
- }
- } else if (rowequ) {
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- i__3 = *n;
- for (i__ = 1; i__ <= i__3; ++i__) {
- x[i__ + j * x_dim1] = r__[i__] * x[i__ + j * x_dim1];
- /* L130: */
- }
- /* L140: */
- }
- i__1 = *nrhs;
- for (j = 1; j <= i__1; ++j) {
- ferr[j] /= rowcnd;
- /* L150: */
- }
- }
- /* Set INFO = N+1 if the matrix is singular to working precision. */
- if (*rcond < _starpu_dlamch_("Epsilon")) {
- *info = *n + 1;
- }
- work[1] = rpvgrw;
- return 0;
- /* End of DGBSVX */
- } /* _starpu_dgbsvx_ */
|