123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348 |
- /* dgbequb.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Subroutine */ int _starpu_dgbequb_(integer *m, integer *n, integer *kl, integer *
- ku, doublereal *ab, integer *ldab, doublereal *r__, doublereal *c__,
- doublereal *rowcnd, doublereal *colcnd, doublereal *amax, integer *
- info)
- {
- /* System generated locals */
- integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4;
- doublereal d__1, d__2, d__3;
- /* Builtin functions */
- double log(doublereal), pow_di(doublereal *, integer *);
- /* Local variables */
- integer i__, j, kd;
- doublereal radix, rcmin, rcmax;
- extern doublereal _starpu_dlamch_(char *);
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- doublereal bignum, logrdx, smlnum;
- /* -- LAPACK routine (version 3.2) -- */
- /* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
- /* -- Jason Riedy of Univ. of California Berkeley. -- */
- /* -- November 2008 -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley and NAG Ltd. -- */
- /* .. */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DGBEQUB computes row and column scalings intended to equilibrate an */
- /* M-by-N matrix A and reduce its condition number. R returns the row */
- /* scale factors and C the column scale factors, chosen to try to make */
- /* the largest element in each row and column of the matrix B with */
- /* elements B(i,j)=R(i)*A(i,j)*C(j) have an absolute value of at most */
- /* the radix. */
- /* R(i) and C(j) are restricted to be a power of the radix between */
- /* SMLNUM = smallest safe number and BIGNUM = largest safe number. Use */
- /* of these scaling factors is not guaranteed to reduce the condition */
- /* number of A but works well in practice. */
- /* This routine differs from DGEEQU by restricting the scaling factors */
- /* to a power of the radix. Baring over- and underflow, scaling by */
- /* these factors introduces no additional rounding errors. However, the */
- /* scaled entries' magnitured are no longer approximately 1 but lie */
- /* between sqrt(radix) and 1/sqrt(radix). */
- /* Arguments */
- /* ========= */
- /* M (input) INTEGER */
- /* The number of rows of the matrix A. M >= 0. */
- /* N (input) INTEGER */
- /* The number of columns of the matrix A. N >= 0. */
- /* KL (input) INTEGER */
- /* The number of subdiagonals within the band of A. KL >= 0. */
- /* KU (input) INTEGER */
- /* The number of superdiagonals within the band of A. KU >= 0. */
- /* AB (input) DOUBLE PRECISION array, dimension (LDAB,N) */
- /* On entry, the matrix A in band storage, in rows 1 to KL+KU+1. */
- /* The j-th column of A is stored in the j-th column of the */
- /* array AB as follows: */
- /* AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl) */
- /* LDAB (input) INTEGER */
- /* The leading dimension of the array A. LDAB >= max(1,M). */
- /* R (output) DOUBLE PRECISION array, dimension (M) */
- /* If INFO = 0 or INFO > M, R contains the row scale factors */
- /* for A. */
- /* C (output) DOUBLE PRECISION array, dimension (N) */
- /* If INFO = 0, C contains the column scale factors for A. */
- /* ROWCND (output) DOUBLE PRECISION */
- /* If INFO = 0 or INFO > M, ROWCND contains the ratio of the */
- /* smallest R(i) to the largest R(i). If ROWCND >= 0.1 and */
- /* AMAX is neither too large nor too small, it is not worth */
- /* scaling by R. */
- /* COLCND (output) DOUBLE PRECISION */
- /* If INFO = 0, COLCND contains the ratio of the smallest */
- /* C(i) to the largest C(i). If COLCND >= 0.1, it is not */
- /* worth scaling by C. */
- /* AMAX (output) DOUBLE PRECISION */
- /* Absolute value of largest matrix element. If AMAX is very */
- /* close to overflow or very close to underflow, the matrix */
- /* should be scaled. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > 0: if INFO = i, and i is */
- /* <= M: the i-th row of A is exactly zero */
- /* > M: the (i-M)-th column of A is exactly zero */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- ab_dim1 = *ldab;
- ab_offset = 1 + ab_dim1;
- ab -= ab_offset;
- --r__;
- --c__;
- /* Function Body */
- *info = 0;
- if (*m < 0) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*kl < 0) {
- *info = -3;
- } else if (*ku < 0) {
- *info = -4;
- } else if (*ldab < *kl + *ku + 1) {
- *info = -6;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DGBEQUB", &i__1);
- return 0;
- }
- /* Quick return if possible. */
- if (*m == 0 || *n == 0) {
- *rowcnd = 1.;
- *colcnd = 1.;
- *amax = 0.;
- return 0;
- }
- /* Get machine constants. Assume SMLNUM is a power of the radix. */
- smlnum = _starpu_dlamch_("S");
- bignum = 1. / smlnum;
- radix = _starpu_dlamch_("B");
- logrdx = log(radix);
- /* Compute row scale factors. */
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- r__[i__] = 0.;
- /* L10: */
- }
- /* Find the maximum element in each row. */
- kd = *ku + 1;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- /* Computing MAX */
- i__2 = j - *ku;
- /* Computing MIN */
- i__4 = j + *kl;
- i__3 = min(i__4,*m);
- for (i__ = max(i__2,1); i__ <= i__3; ++i__) {
- /* Computing MAX */
- d__2 = r__[i__], d__3 = (d__1 = ab[kd + i__ - j + j * ab_dim1],
- abs(d__1));
- r__[i__] = max(d__2,d__3);
- /* L20: */
- }
- /* L30: */
- }
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (r__[i__] > 0.) {
- i__3 = (integer) (log(r__[i__]) / logrdx);
- r__[i__] = pow_di(&radix, &i__3);
- }
- }
- /* Find the maximum and minimum scale factors. */
- rcmin = bignum;
- rcmax = 0.;
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- /* Computing MAX */
- d__1 = rcmax, d__2 = r__[i__];
- rcmax = max(d__1,d__2);
- /* Computing MIN */
- d__1 = rcmin, d__2 = r__[i__];
- rcmin = min(d__1,d__2);
- /* L40: */
- }
- *amax = rcmax;
- if (rcmin == 0.) {
- /* Find the first zero scale factor and return an error code. */
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (r__[i__] == 0.) {
- *info = i__;
- return 0;
- }
- /* L50: */
- }
- } else {
- /* Invert the scale factors. */
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- /* Computing MIN */
- /* Computing MAX */
- d__2 = r__[i__];
- d__1 = max(d__2,smlnum);
- r__[i__] = 1. / min(d__1,bignum);
- /* L60: */
- }
- /* Compute ROWCND = min(R(I)) / max(R(I)). */
- *rowcnd = max(rcmin,smlnum) / min(rcmax,bignum);
- }
- /* Compute column scale factors. */
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- c__[j] = 0.;
- /* L70: */
- }
- /* Find the maximum element in each column, */
- /* assuming the row scaling computed above. */
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- /* Computing MAX */
- i__3 = j - *ku;
- /* Computing MIN */
- i__4 = j + *kl;
- i__2 = min(i__4,*m);
- for (i__ = max(i__3,1); i__ <= i__2; ++i__) {
- /* Computing MAX */
- d__2 = c__[j], d__3 = (d__1 = ab[kd + i__ - j + j * ab_dim1], abs(
- d__1)) * r__[i__];
- c__[j] = max(d__2,d__3);
- /* L80: */
- }
- if (c__[j] > 0.) {
- i__2 = (integer) (log(c__[j]) / logrdx);
- c__[j] = pow_di(&radix, &i__2);
- }
- /* L90: */
- }
- /* Find the maximum and minimum scale factors. */
- rcmin = bignum;
- rcmax = 0.;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- /* Computing MIN */
- d__1 = rcmin, d__2 = c__[j];
- rcmin = min(d__1,d__2);
- /* Computing MAX */
- d__1 = rcmax, d__2 = c__[j];
- rcmax = max(d__1,d__2);
- /* L100: */
- }
- if (rcmin == 0.) {
- /* Find the first zero scale factor and return an error code. */
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (c__[j] == 0.) {
- *info = *m + j;
- return 0;
- }
- /* L110: */
- }
- } else {
- /* Invert the scale factors. */
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- /* Computing MIN */
- /* Computing MAX */
- d__2 = c__[j];
- d__1 = max(d__2,smlnum);
- c__[j] = 1. / min(d__1,bignum);
- /* L120: */
- }
- /* Compute COLCND = min(C(J)) / max(C(J)). */
- *colcnd = max(rcmin,smlnum) / min(rcmax,bignum);
- }
- return 0;
- /* End of DGBEQUB */
- } /* _starpu_dgbequb_ */
|