123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567 |
- /* dgbbrd.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static doublereal c_b8 = 0.;
- static doublereal c_b9 = 1.;
- static integer c__1 = 1;
- /* Subroutine */ int _starpu_dgbbrd_(char *vect, integer *m, integer *n, integer *ncc,
- integer *kl, integer *ku, doublereal *ab, integer *ldab, doublereal *
- d__, doublereal *e, doublereal *q, integer *ldq, doublereal *pt,
- integer *ldpt, doublereal *c__, integer *ldc, doublereal *work,
- integer *info)
- {
- /* System generated locals */
- integer ab_dim1, ab_offset, c_dim1, c_offset, pt_dim1, pt_offset, q_dim1,
- q_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7;
- /* Local variables */
- integer i__, j, l, j1, j2, kb;
- doublereal ra, rb, rc;
- integer kk, ml, mn, nr, mu;
- doublereal rs;
- integer kb1, ml0, mu0, klm, kun, nrt, klu1, inca;
- extern /* Subroutine */ int _starpu_drot_(integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *);
- extern logical _starpu_lsame_(char *, char *);
- logical wantb, wantc;
- integer minmn;
- logical wantq;
- extern /* Subroutine */ int _starpu_dlaset_(char *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, integer *),
- _starpu_dlartg_(doublereal *, doublereal *, doublereal *, doublereal *,
- doublereal *), _starpu_xerbla_(char *, integer *), _starpu_dlargv_(
- integer *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, integer *), _starpu_dlartv_(integer *, doublereal *,
- integer *, doublereal *, integer *, doublereal *, doublereal *,
- integer *);
- logical wantpt;
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DGBBRD reduces a real general m-by-n band matrix A to upper */
- /* bidiagonal form B by an orthogonal transformation: Q' * A * P = B. */
- /* The routine computes B, and optionally forms Q or P', or computes */
- /* Q'*C for a given matrix C. */
- /* Arguments */
- /* ========= */
- /* VECT (input) CHARACTER*1 */
- /* Specifies whether or not the matrices Q and P' are to be */
- /* formed. */
- /* = 'N': do not form Q or P'; */
- /* = 'Q': form Q only; */
- /* = 'P': form P' only; */
- /* = 'B': form both. */
- /* M (input) INTEGER */
- /* The number of rows of the matrix A. M >= 0. */
- /* N (input) INTEGER */
- /* The number of columns of the matrix A. N >= 0. */
- /* NCC (input) INTEGER */
- /* The number of columns of the matrix C. NCC >= 0. */
- /* KL (input) INTEGER */
- /* The number of subdiagonals of the matrix A. KL >= 0. */
- /* KU (input) INTEGER */
- /* The number of superdiagonals of the matrix A. KU >= 0. */
- /* AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N) */
- /* On entry, the m-by-n band matrix A, stored in rows 1 to */
- /* KL+KU+1. The j-th column of A is stored in the j-th column of */
- /* the array AB as follows: */
- /* AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl). */
- /* On exit, A is overwritten by values generated during the */
- /* reduction. */
- /* LDAB (input) INTEGER */
- /* The leading dimension of the array A. LDAB >= KL+KU+1. */
- /* D (output) DOUBLE PRECISION array, dimension (min(M,N)) */
- /* The diagonal elements of the bidiagonal matrix B. */
- /* E (output) DOUBLE PRECISION array, dimension (min(M,N)-1) */
- /* The superdiagonal elements of the bidiagonal matrix B. */
- /* Q (output) DOUBLE PRECISION array, dimension (LDQ,M) */
- /* If VECT = 'Q' or 'B', the m-by-m orthogonal matrix Q. */
- /* If VECT = 'N' or 'P', the array Q is not referenced. */
- /* LDQ (input) INTEGER */
- /* The leading dimension of the array Q. */
- /* LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise. */
- /* PT (output) DOUBLE PRECISION array, dimension (LDPT,N) */
- /* If VECT = 'P' or 'B', the n-by-n orthogonal matrix P'. */
- /* If VECT = 'N' or 'Q', the array PT is not referenced. */
- /* LDPT (input) INTEGER */
- /* The leading dimension of the array PT. */
- /* LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise. */
- /* C (input/output) DOUBLE PRECISION array, dimension (LDC,NCC) */
- /* On entry, an m-by-ncc matrix C. */
- /* On exit, C is overwritten by Q'*C. */
- /* C is not referenced if NCC = 0. */
- /* LDC (input) INTEGER */
- /* The leading dimension of the array C. */
- /* LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0. */
- /* WORK (workspace) DOUBLE PRECISION array, dimension (2*max(M,N)) */
- /* INFO (output) INTEGER */
- /* = 0: successful exit. */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters */
- /* Parameter adjustments */
- ab_dim1 = *ldab;
- ab_offset = 1 + ab_dim1;
- ab -= ab_offset;
- --d__;
- --e;
- q_dim1 = *ldq;
- q_offset = 1 + q_dim1;
- q -= q_offset;
- pt_dim1 = *ldpt;
- pt_offset = 1 + pt_dim1;
- pt -= pt_offset;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1;
- c__ -= c_offset;
- --work;
- /* Function Body */
- wantb = _starpu_lsame_(vect, "B");
- wantq = _starpu_lsame_(vect, "Q") || wantb;
- wantpt = _starpu_lsame_(vect, "P") || wantb;
- wantc = *ncc > 0;
- klu1 = *kl + *ku + 1;
- *info = 0;
- if (! wantq && ! wantpt && ! _starpu_lsame_(vect, "N")) {
- *info = -1;
- } else if (*m < 0) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*ncc < 0) {
- *info = -4;
- } else if (*kl < 0) {
- *info = -5;
- } else if (*ku < 0) {
- *info = -6;
- } else if (*ldab < klu1) {
- *info = -8;
- } else if (*ldq < 1 || wantq && *ldq < max(1,*m)) {
- *info = -12;
- } else if (*ldpt < 1 || wantpt && *ldpt < max(1,*n)) {
- *info = -14;
- } else if (*ldc < 1 || wantc && *ldc < max(1,*m)) {
- *info = -16;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DGBBRD", &i__1);
- return 0;
- }
- /* Initialize Q and P' to the unit matrix, if needed */
- if (wantq) {
- _starpu_dlaset_("Full", m, m, &c_b8, &c_b9, &q[q_offset], ldq);
- }
- if (wantpt) {
- _starpu_dlaset_("Full", n, n, &c_b8, &c_b9, &pt[pt_offset], ldpt);
- }
- /* Quick return if possible. */
- if (*m == 0 || *n == 0) {
- return 0;
- }
- minmn = min(*m,*n);
- if (*kl + *ku > 1) {
- /* Reduce to upper bidiagonal form if KU > 0; if KU = 0, reduce */
- /* first to lower bidiagonal form and then transform to upper */
- /* bidiagonal */
- if (*ku > 0) {
- ml0 = 1;
- mu0 = 2;
- } else {
- ml0 = 2;
- mu0 = 1;
- }
- /* Wherever possible, plane rotations are generated and applied in */
- /* vector operations of length NR over the index set J1:J2:KLU1. */
- /* The sines of the plane rotations are stored in WORK(1:max(m,n)) */
- /* and the cosines in WORK(max(m,n)+1:2*max(m,n)). */
- mn = max(*m,*n);
- /* Computing MIN */
- i__1 = *m - 1;
- klm = min(i__1,*kl);
- /* Computing MIN */
- i__1 = *n - 1;
- kun = min(i__1,*ku);
- kb = klm + kun;
- kb1 = kb + 1;
- inca = kb1 * *ldab;
- nr = 0;
- j1 = klm + 2;
- j2 = 1 - kun;
- i__1 = minmn;
- for (i__ = 1; i__ <= i__1; ++i__) {
- /* Reduce i-th column and i-th row of matrix to bidiagonal form */
- ml = klm + 1;
- mu = kun + 1;
- i__2 = kb;
- for (kk = 1; kk <= i__2; ++kk) {
- j1 += kb;
- j2 += kb;
- /* generate plane rotations to annihilate nonzero elements */
- /* which have been created below the band */
- if (nr > 0) {
- _starpu_dlargv_(&nr, &ab[klu1 + (j1 - klm - 1) * ab_dim1], &inca,
- &work[j1], &kb1, &work[mn + j1], &kb1);
- }
- /* apply plane rotations from the left */
- i__3 = kb;
- for (l = 1; l <= i__3; ++l) {
- if (j2 - klm + l - 1 > *n) {
- nrt = nr - 1;
- } else {
- nrt = nr;
- }
- if (nrt > 0) {
- _starpu_dlartv_(&nrt, &ab[klu1 - l + (j1 - klm + l - 1) *
- ab_dim1], &inca, &ab[klu1 - l + 1 + (j1 - klm
- + l - 1) * ab_dim1], &inca, &work[mn + j1], &
- work[j1], &kb1);
- }
- /* L10: */
- }
- if (ml > ml0) {
- if (ml <= *m - i__ + 1) {
- /* generate plane rotation to annihilate a(i+ml-1,i) */
- /* within the band, and apply rotation from the left */
- _starpu_dlartg_(&ab[*ku + ml - 1 + i__ * ab_dim1], &ab[*ku +
- ml + i__ * ab_dim1], &work[mn + i__ + ml - 1],
- &work[i__ + ml - 1], &ra);
- ab[*ku + ml - 1 + i__ * ab_dim1] = ra;
- if (i__ < *n) {
- /* Computing MIN */
- i__4 = *ku + ml - 2, i__5 = *n - i__;
- i__3 = min(i__4,i__5);
- i__6 = *ldab - 1;
- i__7 = *ldab - 1;
- _starpu_drot_(&i__3, &ab[*ku + ml - 2 + (i__ + 1) *
- ab_dim1], &i__6, &ab[*ku + ml - 1 + (i__
- + 1) * ab_dim1], &i__7, &work[mn + i__ +
- ml - 1], &work[i__ + ml - 1]);
- }
- }
- ++nr;
- j1 -= kb1;
- }
- if (wantq) {
- /* accumulate product of plane rotations in Q */
- i__3 = j2;
- i__4 = kb1;
- for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4)
- {
- _starpu_drot_(m, &q[(j - 1) * q_dim1 + 1], &c__1, &q[j *
- q_dim1 + 1], &c__1, &work[mn + j], &work[j]);
- /* L20: */
- }
- }
- if (wantc) {
- /* apply plane rotations to C */
- i__4 = j2;
- i__3 = kb1;
- for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3)
- {
- _starpu_drot_(ncc, &c__[j - 1 + c_dim1], ldc, &c__[j + c_dim1]
- , ldc, &work[mn + j], &work[j]);
- /* L30: */
- }
- }
- if (j2 + kun > *n) {
- /* adjust J2 to keep within the bounds of the matrix */
- --nr;
- j2 -= kb1;
- }
- i__3 = j2;
- i__4 = kb1;
- for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
- /* create nonzero element a(j-1,j+ku) above the band */
- /* and store it in WORK(n+1:2*n) */
- work[j + kun] = work[j] * ab[(j + kun) * ab_dim1 + 1];
- ab[(j + kun) * ab_dim1 + 1] = work[mn + j] * ab[(j + kun)
- * ab_dim1 + 1];
- /* L40: */
- }
- /* generate plane rotations to annihilate nonzero elements */
- /* which have been generated above the band */
- if (nr > 0) {
- _starpu_dlargv_(&nr, &ab[(j1 + kun - 1) * ab_dim1 + 1], &inca, &
- work[j1 + kun], &kb1, &work[mn + j1 + kun], &kb1);
- }
- /* apply plane rotations from the right */
- i__4 = kb;
- for (l = 1; l <= i__4; ++l) {
- if (j2 + l - 1 > *m) {
- nrt = nr - 1;
- } else {
- nrt = nr;
- }
- if (nrt > 0) {
- _starpu_dlartv_(&nrt, &ab[l + 1 + (j1 + kun - 1) * ab_dim1], &
- inca, &ab[l + (j1 + kun) * ab_dim1], &inca, &
- work[mn + j1 + kun], &work[j1 + kun], &kb1);
- }
- /* L50: */
- }
- if (ml == ml0 && mu > mu0) {
- if (mu <= *n - i__ + 1) {
- /* generate plane rotation to annihilate a(i,i+mu-1) */
- /* within the band, and apply rotation from the right */
- _starpu_dlartg_(&ab[*ku - mu + 3 + (i__ + mu - 2) * ab_dim1],
- &ab[*ku - mu + 2 + (i__ + mu - 1) * ab_dim1],
- &work[mn + i__ + mu - 1], &work[i__ + mu - 1],
- &ra);
- ab[*ku - mu + 3 + (i__ + mu - 2) * ab_dim1] = ra;
- /* Computing MIN */
- i__3 = *kl + mu - 2, i__5 = *m - i__;
- i__4 = min(i__3,i__5);
- _starpu_drot_(&i__4, &ab[*ku - mu + 4 + (i__ + mu - 2) *
- ab_dim1], &c__1, &ab[*ku - mu + 3 + (i__ + mu
- - 1) * ab_dim1], &c__1, &work[mn + i__ + mu -
- 1], &work[i__ + mu - 1]);
- }
- ++nr;
- j1 -= kb1;
- }
- if (wantpt) {
- /* accumulate product of plane rotations in P' */
- i__4 = j2;
- i__3 = kb1;
- for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3)
- {
- _starpu_drot_(n, &pt[j + kun - 1 + pt_dim1], ldpt, &pt[j +
- kun + pt_dim1], ldpt, &work[mn + j + kun], &
- work[j + kun]);
- /* L60: */
- }
- }
- if (j2 + kb > *m) {
- /* adjust J2 to keep within the bounds of the matrix */
- --nr;
- j2 -= kb1;
- }
- i__3 = j2;
- i__4 = kb1;
- for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
- /* create nonzero element a(j+kl+ku,j+ku-1) below the */
- /* band and store it in WORK(1:n) */
- work[j + kb] = work[j + kun] * ab[klu1 + (j + kun) *
- ab_dim1];
- ab[klu1 + (j + kun) * ab_dim1] = work[mn + j + kun] * ab[
- klu1 + (j + kun) * ab_dim1];
- /* L70: */
- }
- if (ml > ml0) {
- --ml;
- } else {
- --mu;
- }
- /* L80: */
- }
- /* L90: */
- }
- }
- if (*ku == 0 && *kl > 0) {
- /* A has been reduced to lower bidiagonal form */
- /* Transform lower bidiagonal form to upper bidiagonal by applying */
- /* plane rotations from the left, storing diagonal elements in D */
- /* and off-diagonal elements in E */
- /* Computing MIN */
- i__2 = *m - 1;
- i__1 = min(i__2,*n);
- for (i__ = 1; i__ <= i__1; ++i__) {
- _starpu_dlartg_(&ab[i__ * ab_dim1 + 1], &ab[i__ * ab_dim1 + 2], &rc, &rs,
- &ra);
- d__[i__] = ra;
- if (i__ < *n) {
- e[i__] = rs * ab[(i__ + 1) * ab_dim1 + 1];
- ab[(i__ + 1) * ab_dim1 + 1] = rc * ab[(i__ + 1) * ab_dim1 + 1]
- ;
- }
- if (wantq) {
- _starpu_drot_(m, &q[i__ * q_dim1 + 1], &c__1, &q[(i__ + 1) * q_dim1 +
- 1], &c__1, &rc, &rs);
- }
- if (wantc) {
- _starpu_drot_(ncc, &c__[i__ + c_dim1], ldc, &c__[i__ + 1 + c_dim1],
- ldc, &rc, &rs);
- }
- /* L100: */
- }
- if (*m <= *n) {
- d__[*m] = ab[*m * ab_dim1 + 1];
- }
- } else if (*ku > 0) {
- /* A has been reduced to upper bidiagonal form */
- if (*m < *n) {
- /* Annihilate a(m,m+1) by applying plane rotations from the */
- /* right, storing diagonal elements in D and off-diagonal */
- /* elements in E */
- rb = ab[*ku + (*m + 1) * ab_dim1];
- for (i__ = *m; i__ >= 1; --i__) {
- _starpu_dlartg_(&ab[*ku + 1 + i__ * ab_dim1], &rb, &rc, &rs, &ra);
- d__[i__] = ra;
- if (i__ > 1) {
- rb = -rs * ab[*ku + i__ * ab_dim1];
- e[i__ - 1] = rc * ab[*ku + i__ * ab_dim1];
- }
- if (wantpt) {
- _starpu_drot_(n, &pt[i__ + pt_dim1], ldpt, &pt[*m + 1 + pt_dim1],
- ldpt, &rc, &rs);
- }
- /* L110: */
- }
- } else {
- /* Copy off-diagonal elements to E and diagonal elements to D */
- i__1 = minmn - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- e[i__] = ab[*ku + (i__ + 1) * ab_dim1];
- /* L120: */
- }
- i__1 = minmn;
- for (i__ = 1; i__ <= i__1; ++i__) {
- d__[i__] = ab[*ku + 1 + i__ * ab_dim1];
- /* L130: */
- }
- }
- } else {
- /* A is diagonal. Set elements of E to zero and copy diagonal */
- /* elements to D. */
- i__1 = minmn - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- e[i__] = 0.;
- /* L140: */
- }
- i__1 = minmn;
- for (i__ = 1; i__ <= i__1; ++i__) {
- d__[i__] = ab[i__ * ab_dim1 + 1];
- /* L150: */
- }
- }
- return 0;
- /* End of DGBBRD */
- } /* _starpu_dgbbrd_ */
|