123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515 |
- /* dbdsdc.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__9 = 9;
- static integer c__0 = 0;
- static doublereal c_b15 = 1.;
- static integer c__1 = 1;
- static doublereal c_b29 = 0.;
- /* Subroutine */ int _starpu_dbdsdc_(char *uplo, char *compq, integer *n, doublereal *
- d__, doublereal *e, doublereal *u, integer *ldu, doublereal *vt,
- integer *ldvt, doublereal *q, integer *iq, doublereal *work, integer *
- iwork, integer *info)
- {
- /* System generated locals */
- integer u_dim1, u_offset, vt_dim1, vt_offset, i__1, i__2;
- doublereal d__1;
- /* Builtin functions */
- double d_sign(doublereal *, doublereal *), log(doublereal);
- /* Local variables */
- integer i__, j, k;
- doublereal p, r__;
- integer z__, ic, ii, kk;
- doublereal cs;
- integer is, iu;
- doublereal sn;
- integer nm1;
- doublereal eps;
- integer ivt, difl, difr, ierr, perm, mlvl, sqre;
- extern logical _starpu_lsame_(char *, char *);
- extern /* Subroutine */ int _starpu_dlasr_(char *, char *, char *, integer *,
- integer *, doublereal *, doublereal *, doublereal *, integer *), _starpu_dcopy_(integer *, doublereal *, integer *
- , doublereal *, integer *), _starpu_dswap_(integer *, doublereal *,
- integer *, doublereal *, integer *);
- integer poles, iuplo, nsize, start;
- extern /* Subroutine */ int _starpu_dlasd0_(integer *, integer *, doublereal *,
- doublereal *, doublereal *, integer *, doublereal *, integer *,
- integer *, integer *, doublereal *, integer *);
- extern doublereal _starpu_dlamch_(char *);
- extern /* Subroutine */ int _starpu_dlasda_(integer *, integer *, integer *,
- integer *, doublereal *, doublereal *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *, doublereal *,
- doublereal *, integer *, integer *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, doublereal *, integer *,
- integer *), _starpu_dlascl_(char *, integer *, integer *, doublereal *,
- doublereal *, integer *, integer *, doublereal *, integer *,
- integer *), _starpu_dlasdq_(char *, integer *, integer *, integer
- *, integer *, integer *, doublereal *, doublereal *, doublereal *,
- integer *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, integer *), _starpu_dlaset_(char *, integer *,
- integer *, doublereal *, doublereal *, doublereal *, integer *), _starpu_dlartg_(doublereal *, doublereal *, doublereal *,
- doublereal *, doublereal *);
- extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *);
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- integer givcol;
- extern doublereal _starpu_dlanst_(char *, integer *, doublereal *, doublereal *);
- integer icompq;
- doublereal orgnrm;
- integer givnum, givptr, qstart, smlsiz, wstart, smlszp;
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DBDSDC computes the singular value decomposition (SVD) of a real */
- /* N-by-N (upper or lower) bidiagonal matrix B: B = U * S * VT, */
- /* using a divide and conquer method, where S is a diagonal matrix */
- /* with non-negative diagonal elements (the singular values of B), and */
- /* U and VT are orthogonal matrices of left and right singular vectors, */
- /* respectively. DBDSDC can be used to compute all singular values, */
- /* and optionally, singular vectors or singular vectors in compact form. */
- /* This code makes very mild assumptions about floating point */
- /* arithmetic. It will work on machines with a guard digit in */
- /* add/subtract, or on those binary machines without guard digits */
- /* which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. */
- /* It could conceivably fail on hexadecimal or decimal machines */
- /* without guard digits, but we know of none. See DLASD3 for details. */
- /* The code currently calls DLASDQ if singular values only are desired. */
- /* However, it can be slightly modified to compute singular values */
- /* using the divide and conquer method. */
- /* Arguments */
- /* ========= */
- /* UPLO (input) CHARACTER*1 */
- /* = 'U': B is upper bidiagonal. */
- /* = 'L': B is lower bidiagonal. */
- /* COMPQ (input) CHARACTER*1 */
- /* Specifies whether singular vectors are to be computed */
- /* as follows: */
- /* = 'N': Compute singular values only; */
- /* = 'P': Compute singular values and compute singular */
- /* vectors in compact form; */
- /* = 'I': Compute singular values and singular vectors. */
- /* N (input) INTEGER */
- /* The order of the matrix B. N >= 0. */
- /* D (input/output) DOUBLE PRECISION array, dimension (N) */
- /* On entry, the n diagonal elements of the bidiagonal matrix B. */
- /* On exit, if INFO=0, the singular values of B. */
- /* E (input/output) DOUBLE PRECISION array, dimension (N-1) */
- /* On entry, the elements of E contain the offdiagonal */
- /* elements of the bidiagonal matrix whose SVD is desired. */
- /* On exit, E has been destroyed. */
- /* U (output) DOUBLE PRECISION array, dimension (LDU,N) */
- /* If COMPQ = 'I', then: */
- /* On exit, if INFO = 0, U contains the left singular vectors */
- /* of the bidiagonal matrix. */
- /* For other values of COMPQ, U is not referenced. */
- /* LDU (input) INTEGER */
- /* The leading dimension of the array U. LDU >= 1. */
- /* If singular vectors are desired, then LDU >= max( 1, N ). */
- /* VT (output) DOUBLE PRECISION array, dimension (LDVT,N) */
- /* If COMPQ = 'I', then: */
- /* On exit, if INFO = 0, VT' contains the right singular */
- /* vectors of the bidiagonal matrix. */
- /* For other values of COMPQ, VT is not referenced. */
- /* LDVT (input) INTEGER */
- /* The leading dimension of the array VT. LDVT >= 1. */
- /* If singular vectors are desired, then LDVT >= max( 1, N ). */
- /* Q (output) DOUBLE PRECISION array, dimension (LDQ) */
- /* If COMPQ = 'P', then: */
- /* On exit, if INFO = 0, Q and IQ contain the left */
- /* and right singular vectors in a compact form, */
- /* requiring O(N log N) space instead of 2*N**2. */
- /* In particular, Q contains all the DOUBLE PRECISION data in */
- /* LDQ >= N*(11 + 2*SMLSIZ + 8*INT(LOG_2(N/(SMLSIZ+1)))) */
- /* words of memory, where SMLSIZ is returned by ILAENV and */
- /* is equal to the maximum size of the subproblems at the */
- /* bottom of the computation tree (usually about 25). */
- /* For other values of COMPQ, Q is not referenced. */
- /* IQ (output) INTEGER array, dimension (LDIQ) */
- /* If COMPQ = 'P', then: */
- /* On exit, if INFO = 0, Q and IQ contain the left */
- /* and right singular vectors in a compact form, */
- /* requiring O(N log N) space instead of 2*N**2. */
- /* In particular, IQ contains all INTEGER data in */
- /* LDIQ >= N*(3 + 3*INT(LOG_2(N/(SMLSIZ+1)))) */
- /* words of memory, where SMLSIZ is returned by ILAENV and */
- /* is equal to the maximum size of the subproblems at the */
- /* bottom of the computation tree (usually about 25). */
- /* For other values of COMPQ, IQ is not referenced. */
- /* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
- /* If COMPQ = 'N' then LWORK >= (4 * N). */
- /* If COMPQ = 'P' then LWORK >= (6 * N). */
- /* If COMPQ = 'I' then LWORK >= (3 * N**2 + 4 * N). */
- /* IWORK (workspace) INTEGER array, dimension (8*N) */
- /* INFO (output) INTEGER */
- /* = 0: successful exit. */
- /* < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > 0: The algorithm failed to compute an singular value. */
- /* The update process of divide and conquer failed. */
- /* Further Details */
- /* =============== */
- /* Based on contributions by */
- /* Ming Gu and Huan Ren, Computer Science Division, University of */
- /* California at Berkeley, USA */
- /* ===================================================================== */
- /* Changed dimension statement in comment describing E from (N) to */
- /* (N-1). Sven, 17 Feb 05. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- --d__;
- --e;
- u_dim1 = *ldu;
- u_offset = 1 + u_dim1;
- u -= u_offset;
- vt_dim1 = *ldvt;
- vt_offset = 1 + vt_dim1;
- vt -= vt_offset;
- --q;
- --iq;
- --work;
- --iwork;
- /* Function Body */
- *info = 0;
- iuplo = 0;
- if (_starpu_lsame_(uplo, "U")) {
- iuplo = 1;
- }
- if (_starpu_lsame_(uplo, "L")) {
- iuplo = 2;
- }
- if (_starpu_lsame_(compq, "N")) {
- icompq = 0;
- } else if (_starpu_lsame_(compq, "P")) {
- icompq = 1;
- } else if (_starpu_lsame_(compq, "I")) {
- icompq = 2;
- } else {
- icompq = -1;
- }
- if (iuplo == 0) {
- *info = -1;
- } else if (icompq < 0) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- } else if (*ldu < 1 || icompq == 2 && *ldu < *n) {
- *info = -7;
- } else if (*ldvt < 1 || icompq == 2 && *ldvt < *n) {
- *info = -9;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DBDSDC", &i__1);
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0) {
- return 0;
- }
- smlsiz = _starpu_ilaenv_(&c__9, "DBDSDC", " ", &c__0, &c__0, &c__0, &c__0);
- if (*n == 1) {
- if (icompq == 1) {
- q[1] = d_sign(&c_b15, &d__[1]);
- q[smlsiz * *n + 1] = 1.;
- } else if (icompq == 2) {
- u[u_dim1 + 1] = d_sign(&c_b15, &d__[1]);
- vt[vt_dim1 + 1] = 1.;
- }
- d__[1] = abs(d__[1]);
- return 0;
- }
- nm1 = *n - 1;
- /* If matrix lower bidiagonal, rotate to be upper bidiagonal */
- /* by applying Givens rotations on the left */
- wstart = 1;
- qstart = 3;
- if (icompq == 1) {
- _starpu_dcopy_(n, &d__[1], &c__1, &q[1], &c__1);
- i__1 = *n - 1;
- _starpu_dcopy_(&i__1, &e[1], &c__1, &q[*n + 1], &c__1);
- }
- if (iuplo == 2) {
- qstart = 5;
- wstart = (*n << 1) - 1;
- i__1 = *n - 1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- _starpu_dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
- d__[i__] = r__;
- e[i__] = sn * d__[i__ + 1];
- d__[i__ + 1] = cs * d__[i__ + 1];
- if (icompq == 1) {
- q[i__ + (*n << 1)] = cs;
- q[i__ + *n * 3] = sn;
- } else if (icompq == 2) {
- work[i__] = cs;
- work[nm1 + i__] = -sn;
- }
- /* L10: */
- }
- }
- /* If ICOMPQ = 0, use DLASDQ to compute the singular values. */
- if (icompq == 0) {
- _starpu_dlasdq_("U", &c__0, n, &c__0, &c__0, &c__0, &d__[1], &e[1], &vt[
- vt_offset], ldvt, &u[u_offset], ldu, &u[u_offset], ldu, &work[
- wstart], info);
- goto L40;
- }
- /* If N is smaller than the minimum divide size SMLSIZ, then solve */
- /* the problem with another solver. */
- if (*n <= smlsiz) {
- if (icompq == 2) {
- _starpu_dlaset_("A", n, n, &c_b29, &c_b15, &u[u_offset], ldu);
- _starpu_dlaset_("A", n, n, &c_b29, &c_b15, &vt[vt_offset], ldvt);
- _starpu_dlasdq_("U", &c__0, n, n, n, &c__0, &d__[1], &e[1], &vt[vt_offset]
- , ldvt, &u[u_offset], ldu, &u[u_offset], ldu, &work[
- wstart], info);
- } else if (icompq == 1) {
- iu = 1;
- ivt = iu + *n;
- _starpu_dlaset_("A", n, n, &c_b29, &c_b15, &q[iu + (qstart - 1) * *n], n);
- _starpu_dlaset_("A", n, n, &c_b29, &c_b15, &q[ivt + (qstart - 1) * *n], n);
- _starpu_dlasdq_("U", &c__0, n, n, n, &c__0, &d__[1], &e[1], &q[ivt + (
- qstart - 1) * *n], n, &q[iu + (qstart - 1) * *n], n, &q[
- iu + (qstart - 1) * *n], n, &work[wstart], info);
- }
- goto L40;
- }
- if (icompq == 2) {
- _starpu_dlaset_("A", n, n, &c_b29, &c_b15, &u[u_offset], ldu);
- _starpu_dlaset_("A", n, n, &c_b29, &c_b15, &vt[vt_offset], ldvt);
- }
- /* Scale. */
- orgnrm = _starpu_dlanst_("M", n, &d__[1], &e[1]);
- if (orgnrm == 0.) {
- return 0;
- }
- _starpu_dlascl_("G", &c__0, &c__0, &orgnrm, &c_b15, n, &c__1, &d__[1], n, &ierr);
- _starpu_dlascl_("G", &c__0, &c__0, &orgnrm, &c_b15, &nm1, &c__1, &e[1], &nm1, &
- ierr);
- eps = _starpu_dlamch_("Epsilon");
- mlvl = (integer) (log((doublereal) (*n) / (doublereal) (smlsiz + 1)) /
- log(2.)) + 1;
- smlszp = smlsiz + 1;
- if (icompq == 1) {
- iu = 1;
- ivt = smlsiz + 1;
- difl = ivt + smlszp;
- difr = difl + mlvl;
- z__ = difr + (mlvl << 1);
- ic = z__ + mlvl;
- is = ic + 1;
- poles = is + 1;
- givnum = poles + (mlvl << 1);
- k = 1;
- givptr = 2;
- perm = 3;
- givcol = perm + mlvl;
- }
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if ((d__1 = d__[i__], abs(d__1)) < eps) {
- d__[i__] = d_sign(&eps, &d__[i__]);
- }
- /* L20: */
- }
- start = 1;
- sqre = 0;
- i__1 = nm1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if ((d__1 = e[i__], abs(d__1)) < eps || i__ == nm1) {
- /* Subproblem found. First determine its size and then */
- /* apply divide and conquer on it. */
- if (i__ < nm1) {
- /* A subproblem with E(I) small for I < NM1. */
- nsize = i__ - start + 1;
- } else if ((d__1 = e[i__], abs(d__1)) >= eps) {
- /* A subproblem with E(NM1) not too small but I = NM1. */
- nsize = *n - start + 1;
- } else {
- /* A subproblem with E(NM1) small. This implies an */
- /* 1-by-1 subproblem at D(N). Solve this 1-by-1 problem */
- /* first. */
- nsize = i__ - start + 1;
- if (icompq == 2) {
- u[*n + *n * u_dim1] = d_sign(&c_b15, &d__[*n]);
- vt[*n + *n * vt_dim1] = 1.;
- } else if (icompq == 1) {
- q[*n + (qstart - 1) * *n] = d_sign(&c_b15, &d__[*n]);
- q[*n + (smlsiz + qstart - 1) * *n] = 1.;
- }
- d__[*n] = (d__1 = d__[*n], abs(d__1));
- }
- if (icompq == 2) {
- _starpu_dlasd0_(&nsize, &sqre, &d__[start], &e[start], &u[start +
- start * u_dim1], ldu, &vt[start + start * vt_dim1],
- ldvt, &smlsiz, &iwork[1], &work[wstart], info);
- } else {
- _starpu_dlasda_(&icompq, &smlsiz, &nsize, &sqre, &d__[start], &e[
- start], &q[start + (iu + qstart - 2) * *n], n, &q[
- start + (ivt + qstart - 2) * *n], &iq[start + k * *n],
- &q[start + (difl + qstart - 2) * *n], &q[start + (
- difr + qstart - 2) * *n], &q[start + (z__ + qstart -
- 2) * *n], &q[start + (poles + qstart - 2) * *n], &iq[
- start + givptr * *n], &iq[start + givcol * *n], n, &
- iq[start + perm * *n], &q[start + (givnum + qstart -
- 2) * *n], &q[start + (ic + qstart - 2) * *n], &q[
- start + (is + qstart - 2) * *n], &work[wstart], &
- iwork[1], info);
- if (*info != 0) {
- return 0;
- }
- }
- start = i__ + 1;
- }
- /* L30: */
- }
- /* Unscale */
- _starpu_dlascl_("G", &c__0, &c__0, &c_b15, &orgnrm, n, &c__1, &d__[1], n, &ierr);
- L40:
- /* Use Selection Sort to minimize swaps of singular vectors */
- i__1 = *n;
- for (ii = 2; ii <= i__1; ++ii) {
- i__ = ii - 1;
- kk = i__;
- p = d__[i__];
- i__2 = *n;
- for (j = ii; j <= i__2; ++j) {
- if (d__[j] > p) {
- kk = j;
- p = d__[j];
- }
- /* L50: */
- }
- if (kk != i__) {
- d__[kk] = d__[i__];
- d__[i__] = p;
- if (icompq == 1) {
- iq[i__] = kk;
- } else if (icompq == 2) {
- _starpu_dswap_(n, &u[i__ * u_dim1 + 1], &c__1, &u[kk * u_dim1 + 1], &
- c__1);
- _starpu_dswap_(n, &vt[i__ + vt_dim1], ldvt, &vt[kk + vt_dim1], ldvt);
- }
- } else if (icompq == 1) {
- iq[i__] = i__;
- }
- /* L60: */
- }
- /* If ICOMPQ = 1, use IQ(N,1) as the indicator for UPLO */
- if (icompq == 1) {
- if (iuplo == 1) {
- iq[*n] = 1;
- } else {
- iq[*n] = 0;
- }
- }
- /* If B is lower bidiagonal, update U by those Givens rotations */
- /* which rotated B to be upper bidiagonal */
- if (iuplo == 2 && icompq == 2) {
- _starpu_dlasr_("L", "V", "B", n, n, &work[1], &work[*n], &u[u_offset], ldu);
- }
- return 0;
- /* End of DBDSDC */
- } /* _starpu_dbdsdc_ */
|