parallel_tasks_reuse_handle.c 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2015-2016 Université de Bordeaux
  4. * Copyright (C) 2015,2017 Inria
  5. * Copyright (C) 2015-2018 CNRS
  6. *
  7. * StarPU is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU Lesser General Public License as published by
  9. * the Free Software Foundation; either version 2.1 of the License, or (at
  10. * your option) any later version.
  11. *
  12. * StarPU is distributed in the hope that it will be useful, but
  13. * WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  15. *
  16. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  17. */
  18. #include <starpu.h>
  19. #include <omp.h>
  20. #include <pthread.h>
  21. #ifdef STARPU_QUICK_CHECK
  22. #define NTASKS 64
  23. #define SIZE 40
  24. #define LOOPS 4
  25. #else
  26. #define NTASKS 100
  27. #define SIZE 400
  28. #define LOOPS 10
  29. #endif
  30. #define N_NESTED_CTXS 2
  31. struct context
  32. {
  33. int ncpus;
  34. int *cpus;
  35. unsigned id;
  36. };
  37. /* Helper for the task that will initiate everything */
  38. void parallel_task_prologue_init_once_and_for_all(void * sched_ctx_)
  39. {
  40. fprintf(stderr, "%p: %s -->\n", (void*)pthread_self(), __func__);
  41. int sched_ctx = *(int *)sched_ctx_;
  42. int *cpuids = NULL;
  43. int ncpuids = 0;
  44. starpu_sched_ctx_get_available_cpuids(sched_ctx, &cpuids, &ncpuids);
  45. #pragma omp parallel num_threads(ncpuids)
  46. {
  47. starpu_sched_ctx_bind_current_thread_to_cpuid(cpuids[omp_get_thread_num()]);
  48. }
  49. omp_set_num_threads(ncpuids);
  50. free(cpuids);
  51. fprintf(stderr, "%p: %s <--\n", (void*)pthread_self(), __func__);
  52. return;
  53. }
  54. void noop(void * buffers[], void * cl_arg)
  55. {
  56. (void)buffers;
  57. (void)cl_arg;
  58. }
  59. static struct starpu_codelet init_parallel_worker_cl=
  60. {
  61. .cpu_funcs = {noop},
  62. .nbuffers = 0,
  63. .name = "init_parallel_worker"
  64. };
  65. /* function called to initialize the parallel "workers" */
  66. void parallel_task_init_one_context(unsigned * context_id)
  67. {
  68. struct starpu_task * t;
  69. int ret;
  70. t = starpu_task_build(&init_parallel_worker_cl,
  71. STARPU_SCHED_CTX, *context_id,
  72. 0);
  73. t->destroy = 1;
  74. t->prologue_callback_pop_func=parallel_task_prologue_init_once_and_for_all;
  75. if (t->prologue_callback_pop_arg_free)
  76. free(t->prologue_callback_pop_arg);
  77. t->prologue_callback_pop_arg=context_id;
  78. t->prologue_callback_pop_arg_free=0;
  79. ret = starpu_task_submit(t);
  80. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
  81. }
  82. struct context main_context;
  83. struct context *contexts;
  84. void parallel_task_init()
  85. {
  86. /* Context creation */
  87. main_context.ncpus = starpu_cpu_worker_get_count();
  88. main_context.cpus = (int *) malloc(main_context.ncpus*sizeof(int));
  89. fprintf(stderr, "ncpus : %d \n",main_context.ncpus);
  90. starpu_worker_get_ids_by_type(STARPU_CPU_WORKER, main_context.cpus, main_context.ncpus);
  91. main_context.id = starpu_sched_ctx_create(main_context.cpus,
  92. main_context.ncpus,"main_ctx",
  93. STARPU_SCHED_CTX_POLICY_NAME,"prio",
  94. 0);
  95. /* Initialize nested contexts */
  96. contexts = malloc(sizeof(struct context)*N_NESTED_CTXS);
  97. int cpus_per_context = main_context.ncpus/N_NESTED_CTXS;
  98. int i;
  99. for(i = 0; i < N_NESTED_CTXS; i++)
  100. {
  101. contexts[i].ncpus = cpus_per_context;
  102. if (i == N_NESTED_CTXS-1)
  103. contexts[i].ncpus += main_context.ncpus%N_NESTED_CTXS;
  104. contexts[i].cpus = main_context.cpus+i*cpus_per_context;
  105. }
  106. for(i = 0; i < N_NESTED_CTXS; i++)
  107. contexts[i].id = starpu_sched_ctx_create(contexts[i].cpus,
  108. contexts[i].ncpus,"nested_ctx",
  109. STARPU_SCHED_CTX_NESTED,main_context.id,
  110. 0);
  111. for (i = 0; i < N_NESTED_CTXS; i++)
  112. {
  113. parallel_task_init_one_context(&contexts[i].id);
  114. }
  115. starpu_task_wait_for_all();
  116. starpu_sched_ctx_set_context(&main_context.id);
  117. }
  118. void parallel_task_deinit()
  119. {
  120. int i;
  121. for (i=0; i<N_NESTED_CTXS;i++)
  122. starpu_sched_ctx_delete(contexts[i].id);
  123. free(contexts);
  124. free(main_context.cpus);
  125. }
  126. /* Codelet SUM */
  127. static void sum_cpu(void * descr[], void *cl_arg)
  128. {
  129. (void)cl_arg;
  130. double *v_dst = (double *) STARPU_VECTOR_GET_PTR(descr[0]);
  131. double *v_src0 = (double *) STARPU_VECTOR_GET_PTR(descr[1]);
  132. double *v_src1 = (double *) STARPU_VECTOR_GET_PTR(descr[2]);
  133. int size = STARPU_VECTOR_GET_NX(descr[0]);
  134. int i, k;
  135. for (k=0;k<LOOPS;k++)
  136. {
  137. #pragma omp parallel for
  138. for (i=0; i<size; i++)
  139. {
  140. v_dst[i]+=v_src0[i]+v_src1[i];
  141. }
  142. }
  143. }
  144. static struct starpu_codelet sum_cl =
  145. {
  146. .cpu_funcs = {sum_cpu, NULL},
  147. .nbuffers = 3,
  148. .modes={STARPU_RW,STARPU_R, STARPU_R}
  149. };
  150. int main(void)
  151. {
  152. int ntasks = NTASKS;
  153. int ret, j, k;
  154. unsigned ncpus = 0;
  155. ret = starpu_init(NULL);
  156. if (ret == -ENODEV)
  157. return 77;
  158. STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
  159. if (starpu_cpu_worker_get_count() < N_NESTED_CTXS)
  160. {
  161. starpu_shutdown();
  162. return 77;
  163. }
  164. parallel_task_init();
  165. /* Data preparation */
  166. double array1[SIZE];
  167. double array2[SIZE];
  168. memset(array1, 0, sizeof(double));
  169. int i;
  170. for (i=0;i<SIZE;i++)
  171. {
  172. array2[i]=i*2;
  173. }
  174. starpu_data_handle_t handle1;
  175. starpu_data_handle_t handle2;
  176. starpu_vector_data_register(&handle1, 0, (uintptr_t)array1, SIZE, sizeof(double));
  177. starpu_vector_data_register(&handle2, 0, (uintptr_t)array2, SIZE, sizeof(double));
  178. for (i = 0; i < ntasks; i++)
  179. {
  180. struct starpu_task * t;
  181. t=starpu_task_build(&sum_cl,
  182. STARPU_RW,handle1,
  183. STARPU_R,handle2,
  184. STARPU_R,handle1,
  185. STARPU_SCHED_CTX, main_context.id,
  186. 0);
  187. t->destroy = 1;
  188. t->possibly_parallel = 1;
  189. ret=starpu_task_submit(t);
  190. if (ret == -ENODEV)
  191. goto out;
  192. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
  193. }
  194. out:
  195. /* wait for all tasks at the end*/
  196. starpu_task_wait_for_all();
  197. starpu_data_unregister(handle1);
  198. starpu_data_unregister(handle2);
  199. parallel_task_deinit();
  200. starpu_shutdown();
  201. return 0;
  202. }