starpu_dgemm_gemm.idgraf 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315
  1. ##################
  2. # Performance Model Version
  3. 45
  4. ####################
  5. # COMBs
  6. # number of combinations
  7. 9
  8. ####################
  9. # COMB_0
  10. # number of types devices
  11. 1
  12. ####################
  13. # DEV_0
  14. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  15. 1
  16. ####################
  17. # DEV_0
  18. # device id
  19. 0
  20. ####################
  21. # DEV_0
  22. # number of cores
  23. 1
  24. ##########
  25. # number of implementations
  26. 1
  27. #####
  28. # Model for cuda0_impl0 (Comb0)
  29. # number of entries
  30. 3
  31. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  32. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  33. # a b c
  34. nan nan nan
  35. # not multiple-regression-base
  36. 0
  37. # hash size flops mean (us) dev (us) sum sum2 n
  38. 0b0b0ce8 7372800 2.621440e+08 1.052061e+03 3.198115e+01 6.838395e+04 7.201055e+07 65
  39. 4220e23d 29491200 2.097152e+09 7.092203e+03 4.667104e+02 6.028372e+05 4.293959e+09 85
  40. 492beed5 66355200 7.077888e+09 2.348390e+04 1.879558e+03 2.230970e+06 5.272750e+10 95
  41. ####################
  42. # COMB_3
  43. # number of types devices
  44. 1
  45. ####################
  46. # DEV_0
  47. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  48. 1
  49. ####################
  50. # DEV_0
  51. # device id
  52. 1
  53. ####################
  54. # DEV_0
  55. # number of cores
  56. 1
  57. ##########
  58. # number of implementations
  59. 1
  60. #####
  61. # Model for cuda1_impl0 (Comb3)
  62. # number of entries
  63. 3
  64. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  65. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  66. # a b c
  67. nan nan nan
  68. # not multiple-regression-base
  69. 0
  70. # hash size flops mean (us) dev (us) sum sum2 n
  71. 0b0b0ce8 7372800 2.621440e+08 1.052063e+03 4.974434e+01 7.680058e+04 8.097966e+07 73
  72. 4220e23d 29491200 2.097152e+09 7.169429e+03 6.510141e+02 6.165709e+05 4.456910e+09 86
  73. 492beed5 66355200 7.077888e+09 2.369721e+04 2.666656e+03 2.203840e+06 5.288620e+10 93
  74. ####################
  75. # COMB_4
  76. # number of types devices
  77. 1
  78. ####################
  79. # DEV_0
  80. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  81. 1
  82. ####################
  83. # DEV_0
  84. # device id
  85. 4
  86. ####################
  87. # DEV_0
  88. # number of cores
  89. 1
  90. ##########
  91. # number of implementations
  92. 1
  93. #####
  94. # Model for cuda4_impl0 (Comb4)
  95. # number of entries
  96. 3
  97. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  98. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  99. # a b c
  100. nan nan nan
  101. # not multiple-regression-base
  102. 0
  103. # hash size flops mean (us) dev (us) sum sum2 n
  104. 0b0b0ce8 7372800 2.621440e+08 1.073351e+03 1.039589e+02 5.796097e+04 6.279609e+07 54
  105. 4220e23d 29491200 2.097152e+09 7.178253e+03 6.674450e+02 6.245080e+05 4.521634e+09 87
  106. 492beed5 66355200 7.077888e+09 2.322028e+04 3.606800e+02 2.252367e+06 5.231319e+10 97
  107. ####################
  108. # COMB_7
  109. # number of types devices
  110. 1
  111. ####################
  112. # DEV_0
  113. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  114. 1
  115. ####################
  116. # DEV_0
  117. # device id
  118. 5
  119. ####################
  120. # DEV_0
  121. # number of cores
  122. 1
  123. ##########
  124. # number of implementations
  125. 1
  126. #####
  127. # Model for cuda5_impl0 (Comb7)
  128. # number of entries
  129. 3
  130. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  131. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  132. # a b c
  133. nan nan nan
  134. # not multiple-regression-base
  135. 0
  136. # hash size flops mean (us) dev (us) sum sum2 n
  137. 0b0b0ce8 7372800 2.621440e+08 1.047275e+03 4.810046e+01 6.074194e+04 6.374769e+07 58
  138. 4220e23d 29491200 2.097152e+09 7.215871e+03 7.571281e+02 6.277808e+05 4.579858e+09 87
  139. 492beed5 66355200 7.077888e+09 2.323291e+04 1.169036e+03 2.230359e+06 5.194892e+10 96
  140. ####################
  141. # COMB_5
  142. # number of types devices
  143. 1
  144. ####################
  145. # DEV_0
  146. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  147. 1
  148. ####################
  149. # DEV_0
  150. # device id
  151. 2
  152. ####################
  153. # DEV_0
  154. # number of cores
  155. 1
  156. ##########
  157. # number of implementations
  158. 1
  159. #####
  160. # Model for cuda2_impl0 (Comb5)
  161. # number of entries
  162. 3
  163. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  164. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  165. # a b c
  166. nan nan nan
  167. # not multiple-regression-base
  168. 0
  169. # hash size flops mean (us) dev (us) sum sum2 n
  170. 0b0b0ce8 7372800 2.621440e+08 1.045464e+03 2.548321e+01 6.168239e+04 6.452506e+07 59
  171. 4220e23d 29491200 2.097152e+09 7.130284e+03 4.158059e+02 5.632924e+05 4.030093e+09 79
  172. 492beed5 66355200 7.077888e+09 2.322391e+04 7.530407e+02 2.090152e+06 4.859253e+10 90
  173. ####################
  174. # COMB_2
  175. # number of types devices
  176. 1
  177. ####################
  178. # DEV_0
  179. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  180. 1
  181. ####################
  182. # DEV_0
  183. # device id
  184. 7
  185. ####################
  186. # DEV_0
  187. # number of cores
  188. 1
  189. ##########
  190. # number of implementations
  191. 1
  192. #####
  193. # Model for cuda7_impl0 (Comb2)
  194. # number of entries
  195. 3
  196. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  197. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  198. # a b c
  199. nan nan nan
  200. # not multiple-regression-base
  201. 0
  202. # hash size flops mean (us) dev (us) sum sum2 n
  203. 0b0b0ce8 7372800 2.621440e+08 1.058842e+03 8.984549e+01 6.353054e+04 6.775316e+07 60
  204. 4220e23d 29491200 2.097152e+09 7.197321e+03 6.902584e+02 6.549562e+05 4.757287e+09 91
  205. 492beed5 66355200 7.077888e+09 2.322727e+04 1.128695e+03 2.253045e+06 5.245566e+10 97
  206. ####################
  207. # COMB_1
  208. # number of types devices
  209. 1
  210. ####################
  211. # DEV_0
  212. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  213. 1
  214. ####################
  215. # DEV_0
  216. # device id
  217. 6
  218. ####################
  219. # DEV_0
  220. # number of cores
  221. 1
  222. ##########
  223. # number of implementations
  224. 1
  225. #####
  226. # Model for cuda6_impl0 (Comb1)
  227. # number of entries
  228. 3
  229. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  230. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  231. # a b c
  232. nan nan nan
  233. # not multiple-regression-base
  234. 0
  235. # hash size flops mean (us) dev (us) sum sum2 n
  236. 0b0b0ce8 7372800 2.621440e+08 1.063382e+03 9.562944e+01 5.529587e+04 5.927619e+07 52
  237. 4220e23d 29491200 2.097152e+09 7.227464e+03 8.541890e+02 6.287894e+05 4.608031e+09 87
  238. 492beed5 66355200 7.077888e+09 2.322877e+04 9.079114e+02 2.253191e+06 5.241882e+10 97
  239. ####################
  240. # COMB_6
  241. # number of types devices
  242. 1
  243. ####################
  244. # DEV_0
  245. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  246. 1
  247. ####################
  248. # DEV_0
  249. # device id
  250. 3
  251. ####################
  252. # DEV_0
  253. # number of cores
  254. 1
  255. ##########
  256. # number of implementations
  257. 1
  258. #####
  259. # Model for cuda3_impl0 (Comb6)
  260. # number of entries
  261. 3
  262. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  263. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  264. # a b c
  265. nan nan nan
  266. # not multiple-regression-base
  267. 0
  268. # hash size flops mean (us) dev (us) sum sum2 n
  269. 0b0b0ce8 7372800 2.621440e+08 1.057961e+03 6.059722e+01 5.289807e+04 5.614771e+07 50
  270. 4220e23d 29491200 2.097152e+09 7.169935e+03 6.166650e+02 5.592549e+05 4.039483e+09 78
  271. 492beed5 66355200 7.077888e+09 2.322622e+04 8.447450e+02 2.090360e+06 4.861539e+10 90
  272. ####################
  273. # COMB_8
  274. # number of types devices
  275. 1
  276. ####################
  277. # DEV_0
  278. # device type (CPU - 0, CUDA - 1, OPENCL - 2, MIC - 3)
  279. 0
  280. ####################
  281. # DEV_0
  282. # device id
  283. 0
  284. ####################
  285. # DEV_0
  286. # number of cores
  287. 1
  288. ##########
  289. # number of implementations
  290. 1
  291. #####
  292. # Model for cpu0_impl0 (Comb8)
  293. # number of entries
  294. 3
  295. # sumlnx sumlnx2 sumlny sumlnxlny alpha beta n minx maxx
  296. 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 nan nan 0 0 0
  297. # a b c
  298. nan nan nan
  299. # not multiple-regression-base
  300. 0
  301. # hash size flops mean (us) dev (us) sum sum2 n
  302. 0b0b0ce8 7372800 2.621440e+08 3.132122e+04 3.995607e+03 8.456730e+05 2.691857e+10 27
  303. 4220e23d 29491200 2.097152e+09 2.241875e+05 7.780157e+03 6.053063e+06 1.358656e+12 27
  304. 492beed5 66355200 7.077888e+09 7.222063e+05 7.344712e+03 1.661074e+07 1.199762e+13 23