mpi-support.texi 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566
  1. @c -*-texinfo-*-
  2. @c This file is part of the StarPU Handbook.
  3. @c Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. @c Copyright (C) 2010, 2011, 2012 Centre National de la Recherche Scientifique
  5. @c Copyright (C) 2011 Institut National de Recherche en Informatique et Automatique
  6. @c See the file starpu.texi for copying conditions.
  7. The integration of MPI transfers within task parallelism is done in a
  8. very natural way by the means of asynchronous interactions between the
  9. application and StarPU. This is implemented in a separate libstarpumpi library
  10. which basically provides "StarPU" equivalents of @code{MPI_*} functions, where
  11. @code{void *} buffers are replaced with @code{starpu_data_handle_t}s, and all
  12. GPU-RAM-NIC transfers are handled efficiently by StarPU-MPI. The user has to
  13. use the usual @code{mpirun} command of the MPI implementation to start StarPU on
  14. the different MPI nodes.
  15. An MPI Insert Task function provides an even more seamless transition to a
  16. distributed application, by automatically issuing all required data transfers
  17. according to the task graph and an application-provided distribution.
  18. @menu
  19. * The API::
  20. * Simple Example::
  21. * Exchanging User Defined Data Interface::
  22. * MPI Insert Task Utility::
  23. * MPI Collective Operations::
  24. @end menu
  25. @node The API
  26. @section The API
  27. @subsection Compilation
  28. The flags required to compile or link against the MPI layer are then
  29. accessible with the following commands:
  30. @example
  31. % pkg-config --cflags starpumpi-1.0 # options for the compiler
  32. % pkg-config --libs starpumpi-1.0 # options for the linker
  33. @end example
  34. Also pass the @code{--static} option if the application is to be linked statically.
  35. @subsection Initialisation
  36. @deftypefun int starpu_mpi_init (int *@var{argc}, char ***@var{argv})
  37. Initializes the starpumpi library. If MPI is not already initialized,
  38. it will be by calling @code{MPI_Init_Thread(argc, argv, MPI_THREAD_SERIALIZED, ...)}.
  39. @end deftypefun
  40. @deftypefun int starpu_mpi_initialize (void)
  41. This function has been made deprecated. One should use instead the
  42. function @code{starpu_mpi_init()} defined above.
  43. @end deftypefun
  44. @deftypefun int starpu_mpi_initialize_extended (int *@var{rank}, int *@var{world_size})
  45. This function has been made deprecated. One should use instead the
  46. function @code{starpu_mpi_init()} defined above.
  47. @end deftypefun
  48. @deftypefun int starpu_mpi_shutdown (void)
  49. Cleans the starpumpi library. This must be called between calling
  50. @code{starpu_mpi} functions and @code{starpu_shutdown()}.
  51. @code{MPI_Finalize()} will be called if StarPU-MPI has been initialized
  52. by @code{starpu_mpi_init()}.
  53. @end deftypefun
  54. @deftypefun void starpu_mpi_comm_amounts_retrieve (size_t *@var{comm_amounts})
  55. Retrieve the current amount of communications from the current node in
  56. the array @code{comm_amounts} which must have a size greater or equal
  57. to the world size. Communications statistics must be enabled
  58. (@pxref{STARPU_COMM_STATS}).
  59. @end deftypefun
  60. @subsection Communication
  61. The standard point to point communications of MPI have been
  62. implemented. The semantic is similar to the MPI one, but adapted to
  63. the DSM provided by StarPU. A MPI request will only be submitted when
  64. the data is available in the main memory of the node submitting the
  65. request.
  66. @deftypefun int starpu_mpi_send (starpu_data_handle_t @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm})
  67. Performs a standard-mode, blocking send of @var{data_handle} to the
  68. node @var{dest} using the message tag @code{mpi_tag} within the
  69. communicator @var{comm}.
  70. @end deftypefun
  71. @deftypefun int starpu_mpi_recv (starpu_data_handle_t @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, MPI_Status *@var{status})
  72. Performs a standard-mode, blocking receive in @var{data_handle} from the
  73. node @var{source} using the message tag @code{mpi_tag} within the
  74. communicator @var{comm}.
  75. @end deftypefun
  76. @deftypefun int starpu_mpi_isend (starpu_data_handle_t @var{data_handle}, starpu_mpi_req *@var{req}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm})
  77. Posts a standard-mode, non blocking send of @var{data_handle} to the
  78. node @var{dest} using the message tag @code{mpi_tag} within the
  79. communicator @var{comm}. After the call, the pointer to the request
  80. @var{req} can be used to test the completion of the communication.
  81. @end deftypefun
  82. @deftypefun int starpu_mpi_irecv (starpu_data_handle_t @var{data_handle}, starpu_mpi_req *@var{req}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm})
  83. Posts a nonblocking receive in @var{data_handle} from the
  84. node @var{source} using the message tag @code{mpi_tag} within the
  85. communicator @var{comm}. After the call, the pointer to the request
  86. @var{req} can be used to test the completion of the communication.
  87. @end deftypefun
  88. @deftypefun int starpu_mpi_isend_detached (starpu_data_handle_t @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm}, void (*@var{callback})(void *), void *@var{arg})
  89. Posts a standard-mode, non blocking send of @var{data_handle} to the
  90. node @var{dest} using the message tag @code{mpi_tag} within the
  91. communicator @var{comm}. On completion, the @var{callback} function is
  92. called with the argument @var{arg}.
  93. @end deftypefun
  94. @deftypefun int starpu_mpi_irecv_detached (starpu_data_handle_t @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, void (*@var{callback})(void *), void *@var{arg})
  95. Posts a nonblocking receive in @var{data_handle} from the
  96. node @var{source} using the message tag @code{mpi_tag} within the
  97. communicator @var{comm}. On completion, the @var{callback} function is
  98. called with the argument @var{arg}.
  99. @end deftypefun
  100. @deftypefun int starpu_mpi_wait (starpu_mpi_req *@var{req}, MPI_Status *@var{status})
  101. Returns when the operation identified by request @var{req} is complete.
  102. @end deftypefun
  103. @deftypefun int starpu_mpi_test (starpu_mpi_req *@var{req}, int *@var{flag}, MPI_Status *@var{status})
  104. If the operation identified by @var{req} is complete, set @var{flag}
  105. to 1. The @var{status} object is set to contain information on the
  106. completed operation.
  107. @end deftypefun
  108. @deftypefun int starpu_mpi_barrier (MPI_Comm @var{comm})
  109. Blocks the caller until all group members of the communicator
  110. @var{comm} have called it.
  111. @end deftypefun
  112. @deftypefun int starpu_mpi_isend_detached_unlock_tag (starpu_data_handle_t @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm}, starpu_tag_t @var{tag})
  113. Posts a standard-mode, non blocking send of @var{data_handle} to the
  114. node @var{dest} using the message tag @code{mpi_tag} within the
  115. communicator @var{comm}. On completion, @var{tag} is unlocked.
  116. @end deftypefun
  117. @deftypefun int starpu_mpi_irecv_detached_unlock_tag (starpu_data_handle_t @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, starpu_tag_t @var{tag})
  118. Posts a nonblocking receive in @var{data_handle} from the
  119. node @var{source} using the message tag @code{mpi_tag} within the
  120. communicator @var{comm}. On completion, @var{tag} is unlocked.
  121. @end deftypefun
  122. @deftypefun int starpu_mpi_isend_array_detached_unlock_tag (unsigned @var{array_size}, starpu_data_handle_t *@var{data_handle}, int *@var{dest}, int *@var{mpi_tag}, MPI_Comm *@var{comm}, starpu_tag_t @var{tag})
  123. Posts @var{array_size} standard-mode, non blocking send. Each post
  124. sends the n-th data of the array @var{data_handle} to the n-th node of
  125. the array @var{dest}
  126. using the n-th message tag of the array @code{mpi_tag} within the n-th
  127. communicator of the array
  128. @var{comm}. On completion of the all the requests, @var{tag} is unlocked.
  129. @end deftypefun
  130. @deftypefun int starpu_mpi_irecv_array_detached_unlock_tag (unsigned @var{array_size}, starpu_data_handle_t *@var{data_handle}, int *@var{source}, int *@var{mpi_tag}, MPI_Comm *@var{comm}, starpu_tag_t @var{tag})
  131. Posts @var{array_size} nonblocking receive. Each post receives in the
  132. n-th data of the array @var{data_handle} from the n-th
  133. node of the array @var{source} using the n-th message tag of the array
  134. @code{mpi_tag} within the n-th communicator of the array @var{comm}.
  135. On completion of the all the requests, @var{tag} is unlocked.
  136. @end deftypefun
  137. @page
  138. @node Simple Example
  139. @section Simple Example
  140. @cartouche
  141. @smallexample
  142. void increment_token(void)
  143. @{
  144. struct starpu_task *task = starpu_task_create();
  145. task->cl = &increment_cl;
  146. task->handles[0] = token_handle;
  147. starpu_task_submit(task);
  148. @}
  149. @end smallexample
  150. @end cartouche
  151. @cartouche
  152. @smallexample
  153. int main(int argc, char **argv)
  154. @{
  155. int rank, size;
  156. starpu_init(NULL);
  157. starpu_mpi_initialize_extended(&rank, &size);
  158. starpu_vector_data_register(&token_handle, 0, (uintptr_t)&token, 1, sizeof(unsigned));
  159. unsigned nloops = NITER;
  160. unsigned loop;
  161. unsigned last_loop = nloops - 1;
  162. unsigned last_rank = size - 1;
  163. @end smallexample
  164. @end cartouche
  165. @cartouche
  166. @smallexample
  167. for (loop = 0; loop < nloops; loop++) @{
  168. int tag = loop*size + rank;
  169. if (loop == 0 && rank == 0)
  170. @{
  171. token = 0;
  172. fprintf(stdout, "Start with token value %d\n", token);
  173. @}
  174. else
  175. @{
  176. starpu_mpi_irecv_detached(token_handle, (rank+size-1)%size, tag,
  177. MPI_COMM_WORLD, NULL, NULL);
  178. @}
  179. increment_token();
  180. if (loop == last_loop && rank == last_rank)
  181. @{
  182. starpu_data_acquire(token_handle, STARPU_R);
  183. fprintf(stdout, "Finished: token value %d\n", token);
  184. starpu_data_release(token_handle);
  185. @}
  186. else
  187. @{
  188. starpu_mpi_isend_detached(token_handle, (rank+1)%size, tag+1,
  189. MPI_COMM_WORLD, NULL, NULL);
  190. @}
  191. @}
  192. starpu_task_wait_for_all();
  193. @end smallexample
  194. @end cartouche
  195. @cartouche
  196. @smallexample
  197. starpu_mpi_shutdown();
  198. starpu_shutdown();
  199. if (rank == last_rank)
  200. @{
  201. fprintf(stderr, "[%d] token = %d == %d * %d ?\n", rank, token, nloops, size);
  202. STARPU_ASSERT(token == nloops*size);
  203. @}
  204. @end smallexample
  205. @end cartouche
  206. @page
  207. @node Exchanging User Defined Data Interface
  208. @section Exchanging User Defined Data Interface
  209. New data interfaces defined as explained in @ref{An example
  210. of data interface} can also be used within StarPU-MPI and exchanged
  211. between nodes. Two functions needs to be defined through
  212. the type @code{struct starpu_data_interface_ops} (@pxref{Data
  213. Interface API}). The pack function takes a handle and returns a
  214. contiguous memory buffer along with its size where data to be conveyed to another node
  215. should be copied. The reversed operation is implemented in the unpack
  216. function which takes a contiguous memory buffer and recreates the data
  217. handle.
  218. @cartouche
  219. @smallexample
  220. static int complex_pack_data(starpu_data_handle_t handle, uint32_t node, void **ptr, size_t *count)
  221. @{
  222. STARPU_ASSERT(starpu_data_test_if_allocated_on_node(handle, node));
  223. struct starpu_complex_interface *complex_interface =
  224. (struct starpu_complex_interface *) starpu_data_get_interface_on_node(handle, node);
  225. *count = complex_get_size(handle);
  226. *ptr = malloc(*count);
  227. memcpy(*ptr, complex_interface->real, complex_interface->nx*sizeof(double));
  228. memcpy(*ptr+complex_interface->nx*sizeof(double), complex_interface->imaginary,
  229. complex_interface->nx*sizeof(double));
  230. return 0;
  231. @}
  232. @end smallexample
  233. @end cartouche
  234. @cartouche
  235. @smallexample
  236. static int complex_unpack_data(starpu_data_handle_t handle, uint32_t node, void *ptr, size_t count)
  237. @{
  238. STARPU_ASSERT(starpu_data_test_if_allocated_on_node(handle, node));
  239. struct starpu_complex_interface *complex_interface =
  240. (struct starpu_complex_interface *) starpu_data_get_interface_on_node(handle, node);
  241. memcpy(complex_interface->real, ptr, complex_interface->nx*sizeof(double));
  242. memcpy(complex_interface->imaginary, ptr+complex_interface->nx*sizeof(double),
  243. complex_interface->nx*sizeof(double));
  244. return 0;
  245. @}
  246. @end smallexample
  247. @end cartouche
  248. @cartouche
  249. @smallexample
  250. static struct starpu_data_interface_ops interface_complex_ops =
  251. @{
  252. ...
  253. .pack_data = complex_pack_data,
  254. .unpack_data = complex_unpack_data
  255. @};
  256. @end smallexample
  257. @end cartouche
  258. @page
  259. @node MPI Insert Task Utility
  260. @section MPI Insert Task Utility
  261. To save the programmer from having to explicit all communications, StarPU
  262. provides an "MPI Insert Task Utility". The principe is that the application
  263. decides a distribution of the data over the MPI nodes by allocating it and
  264. notifying StarPU of that decision, i.e. tell StarPU which MPI node "owns"
  265. which data. It also decides, for each handle, an MPI tag which will be used to
  266. exchange the content of the handle. All MPI nodes then process the whole task
  267. graph, and StarPU automatically determines which node actually execute which
  268. task, and trigger the required MPI transfers.
  269. @deftypefun int starpu_data_set_tag (starpu_data_handle_t @var{handle}, int @var{tag})
  270. Tell StarPU-MPI which MPI tag to use when exchanging the data.
  271. @end deftypefun
  272. @deftypefun int starpu_data_get_tag (starpu_data_handle_t @var{handle})
  273. Returns the MPI tag to be used when exchanging the data.
  274. @end deftypefun
  275. @deftypefun int starpu_data_set_rank (starpu_data_handle_t @var{handle}, int @var{rank})
  276. Tell StarPU-MPI which MPI node "owns" a given data, that is, the node which will
  277. always keep an up-to-date value, and will by default execute tasks which write
  278. to it.
  279. @end deftypefun
  280. @deftypefun int starpu_data_get_rank (starpu_data_handle_t @var{handle})
  281. Returns the last value set by @code{starpu_data_set_rank}.
  282. @end deftypefun
  283. @defmac STARPU_EXECUTE_ON_NODE
  284. this macro is used when calling @code{starpu_mpi_insert_task}, and
  285. must be followed by a integer value which specified the node on which
  286. to execute the codelet.
  287. @end defmac
  288. @defmac STARPU_EXECUTE_ON_DATA
  289. this macro is used when calling @code{starpu_mpi_insert_task}, and
  290. must be followed by a data handle to specify that the node owning the
  291. given data will execute the codelet.
  292. @end defmac
  293. @deftypefun int starpu_mpi_insert_task (MPI_Comm @var{comm}, struct starpu_codelet *@var{codelet}, ...)
  294. Create and submit a task corresponding to @var{codelet} with the following
  295. arguments. The argument list must be zero-terminated.
  296. The arguments following the codelets are the same types as for the
  297. function @code{starpu_insert_task} defined in @ref{Insert Task
  298. Utility}. The extra argument @code{STARPU_EXECUTE_ON_NODE} followed by an
  299. integer allows to specify the MPI node to execute the codelet. It is also
  300. possible to specify that the node owning a specific data will execute
  301. the codelet, by using @code{STARPU_EXECUTE_ON_DATA} followed by a data
  302. handle.
  303. The internal algorithm is as follows:
  304. @enumerate
  305. @item Find out whether we (as an MPI node) are to execute the codelet
  306. because we own the data to be written to. If different nodes own data
  307. to be written to, the argument @code{STARPU_EXECUTE_ON_NODE} or
  308. @code{STARPU_EXECUTE_ON_DATA} has to be used to specify which MPI node will
  309. execute the task.
  310. @item Send and receive data as requested. Nodes owning data which need to be
  311. read by the task are sending them to the MPI node which will execute it. The
  312. latter receives them.
  313. @item Execute the codelet. This is done by the MPI node selected in the
  314. 1st step of the algorithm.
  315. @item In the case when different MPI nodes own data to be written to, send
  316. written data back to their owners.
  317. @end enumerate
  318. The algorithm also includes a communication cache mechanism that
  319. allows not to send data twice to the same MPI node, unless the data
  320. has been modified. The cache can be disabled
  321. (@pxref{STARPU_MPI_CACHE}).
  322. @end deftypefun
  323. @deftypefun void starpu_mpi_get_data_on_node (MPI_Comm @var{comm}, starpu_data_handle_t @var{data_handle}, int @var{node})
  324. Transfer data @var{data_handle} to MPI node @var{node}, sending it from its
  325. owner if needed. At least the target node and the owner have to call the
  326. function.
  327. @end deftypefun
  328. Here an stencil example showing how to use @code{starpu_mpi_insert_task}. One
  329. first needs to define a distribution function which specifies the
  330. locality of the data. Note that that distribution information needs to
  331. be given to StarPU by calling @code{starpu_data_set_rank}.
  332. @cartouche
  333. @smallexample
  334. /* Returns the MPI node number where data is */
  335. int my_distrib(int x, int y, int nb_nodes) @{
  336. /* Block distrib */
  337. return ((int)(x / sqrt(nb_nodes) + (y / sqrt(nb_nodes)) * sqrt(nb_nodes))) % nb_nodes;
  338. // /* Other examples useful for other kinds of computations */
  339. // /* / distrib */
  340. // return (x+y) % nb_nodes;
  341. // /* Block cyclic distrib */
  342. // unsigned side = sqrt(nb_nodes);
  343. // return x % side + (y % side) * size;
  344. @}
  345. @end smallexample
  346. @end cartouche
  347. Now the data can be registered within StarPU. Data which are not
  348. owned but will be needed for computations can be registered through
  349. the lazy allocation mechanism, i.e. with a @code{home_node} set to -1.
  350. StarPU will automatically allocate the memory when it is used for the
  351. first time.
  352. One can note an optimization here (the @code{else if} test): we only register
  353. data which will be needed by the tasks that we will execute.
  354. @cartouche
  355. @smallexample
  356. unsigned matrix[X][Y];
  357. starpu_data_handle_t data_handles[X][Y];
  358. for(x = 0; x < X; x++) @{
  359. for (y = 0; y < Y; y++) @{
  360. int mpi_rank = my_distrib(x, y, size);
  361. if (mpi_rank == my_rank)
  362. /* Owning data */
  363. starpu_variable_data_register(&data_handles[x][y], 0,
  364. (uintptr_t)&(matrix[x][y]), sizeof(unsigned));
  365. else if (my_rank == my_distrib(x+1, y, size) || my_rank == my_distrib(x-1, y, size)
  366. || my_rank == my_distrib(x, y+1, size) || my_rank == my_distrib(x, y-1, size))
  367. /* I don't own that index, but will need it for my computations */
  368. starpu_variable_data_register(&data_handles[x][y], -1,
  369. (uintptr_t)NULL, sizeof(unsigned));
  370. else
  371. /* I know it's useless to allocate anything for this */
  372. data_handles[x][y] = NULL;
  373. if (data_handles[x][y])
  374. starpu_data_set_rank(data_handles[x][y], mpi_rank);
  375. @}
  376. @}
  377. @end smallexample
  378. @end cartouche
  379. Now @code{starpu_mpi_insert_task()} can be called for the different
  380. steps of the application.
  381. @cartouche
  382. @smallexample
  383. for(loop=0 ; loop<niter; loop++)
  384. for (x = 1; x < X-1; x++)
  385. for (y = 1; y < Y-1; y++)
  386. starpu_mpi_insert_task(MPI_COMM_WORLD, &stencil5_cl,
  387. STARPU_RW, data_handles[x][y],
  388. STARPU_R, data_handles[x-1][y],
  389. STARPU_R, data_handles[x+1][y],
  390. STARPU_R, data_handles[x][y-1],
  391. STARPU_R, data_handles[x][y+1],
  392. 0);
  393. starpu_task_wait_for_all();
  394. @end smallexample
  395. @end cartouche
  396. I.e. all MPI nodes process the whole task graph, but as mentioned above, for
  397. each task, only the MPI node which owns the data being written to (here,
  398. @code{data_handles[x][y]}) will actually run the task. The other MPI nodes will
  399. automatically send the required data.
  400. This can be a concern with a growing number of nodes. To avoid this, the
  401. application can prune the task for loops according to the data distribution,
  402. so as to only submit tasks on nodes which have to care about them (either to
  403. execute them, or to send the required data).
  404. @node MPI Collective Operations
  405. @section MPI Collective Operations
  406. @deftypefun int starpu_mpi_scatter_detached (starpu_data_handle_t *@var{data_handles}, int @var{count}, int @var{root}, MPI_Comm @var{comm}, {void (*}@var{scallback})(void *), {void *}@var{sarg}, {void (*}@var{rcallback})(void *), {void *}@var{rarg})
  407. Scatter data among processes of the communicator based on the ownership of
  408. the data. For each data of the array @var{data_handles}, the
  409. process @var{root} sends the data to the process owning this data.
  410. Processes receiving data must have valid data handles to receive them.
  411. On completion of the collective communication, the @var{scallback} function is
  412. called with the argument @var{sarg} on the process @var{root}, the @var{rcallback} function is
  413. called with the argument @var{rarg} on any other process.
  414. @end deftypefun
  415. @deftypefun int starpu_mpi_gather_detached (starpu_data_handle_t *@var{data_handles}, int @var{count}, int @var{root}, MPI_Comm @var{comm}, {void (*}@var{scallback})(void *), {void *}@var{sarg}, {void (*}@var{rcallback})(void *), {void *}@var{rarg})
  416. Gather data from the different processes of the communicator onto the
  417. process @var{root}. Each process owning data handle in the array
  418. @var{data_handles} will send them to the process @var{root}. The
  419. process @var{root} must have valid data handles to receive the data.
  420. On completion of the collective communication, the @var{rcallback} function is
  421. called with the argument @var{rarg} on the process @var{root}, the @var{scallback} function is
  422. called with the argument @var{sarg} on any other process.
  423. @end deftypefun
  424. @page
  425. @cartouche
  426. @smallexample
  427. if (rank == root)
  428. @{
  429. /* Allocate the vector */
  430. vector = malloc(nblocks * sizeof(float *));
  431. for(x=0 ; x<nblocks ; x++)
  432. @{
  433. starpu_malloc((void **)&vector[x], block_size*sizeof(float));
  434. @}
  435. @}
  436. /* Allocate data handles and register data to StarPU */
  437. data_handles = malloc(nblocks*sizeof(starpu_data_handle_t *));
  438. for(x = 0; x < nblocks ; x++)
  439. @{
  440. int mpi_rank = my_distrib(x, nodes);
  441. if (rank == root) @{
  442. starpu_vector_data_register(&data_handles[x], 0, (uintptr_t)vector[x],
  443. blocks_size, sizeof(float));
  444. @}
  445. else if ((mpi_rank == rank) || ((rank == mpi_rank+1 || rank == mpi_rank-1))) @{
  446. /* I own that index, or i will need it for my computations */
  447. starpu_vector_data_register(&data_handles[x], -1, (uintptr_t)NULL,
  448. block_size, sizeof(float));
  449. @}
  450. else @{
  451. /* I know it's useless to allocate anything for this */
  452. data_handles[x] = NULL;
  453. @}
  454. if (data_handles[x]) @{
  455. starpu_data_set_rank(data_handles[x], mpi_rank);
  456. @}
  457. @}
  458. /* Scatter the matrix among the nodes */
  459. starpu_mpi_scatter_detached(data_handles, nblocks, root, MPI_COMM_WORLD);
  460. /* Calculation */
  461. for(x = 0; x < nblocks ; x++) @{
  462. if (data_handles[x]) @{
  463. int owner = starpu_data_get_rank(data_handles[x]);
  464. if (owner == rank) @{
  465. starpu_insert_task(&cl, STARPU_RW, data_handles[x], 0);
  466. @}
  467. @}
  468. @}
  469. /* Gather the matrix on main node */
  470. starpu_mpi_gather_detached(data_handles, nblocks, 0, MPI_COMM_WORLD);
  471. @end smallexample
  472. @end cartouche