basic-api.texi 133 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964
  1. @c -*-texinfo-*-
  2. @c This file is part of the StarPU Handbook.
  3. @c Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. @c Copyright (C) 2010, 2011, 2012, 2013 Centre National de la Recherche Scientifique
  5. @c Copyright (C) 2011, 2012 Institut National de Recherche en Informatique et Automatique
  6. @c See the file starpu.texi for copying conditions.
  7. @menu
  8. * Versioning::
  9. * Initialization and Termination::
  10. * Standard memory library::
  11. * Workers' Properties::
  12. * Data Management::
  13. * Data Interfaces::
  14. * Data Partition::
  15. * Codelets and Tasks::
  16. * Insert Task::
  17. * Explicit Dependencies::
  18. * Implicit Data Dependencies::
  19. * Performance Model API::
  20. * Profiling API::
  21. * CUDA extensions::
  22. * OpenCL extensions::
  23. * Miscellaneous helpers::
  24. @end menu
  25. @node Versioning
  26. @section Versioning
  27. @defmac STARPU_MAJOR_VERSION
  28. Define the major version of StarPU
  29. @end defmac
  30. @defmac STARPU_MINOR_VERSION
  31. Define the minor version of StarPU
  32. @end defmac
  33. @node Initialization and Termination
  34. @section Initialization and Termination
  35. @deftp {Data Type} {struct starpu_driver}
  36. @table @asis
  37. @item @code{enum starpu_archtype type}
  38. The type of the driver. Only STARPU_CPU_DRIVER, STARPU_CUDA_DRIVER and
  39. STARPU_OPENCL_DRIVER are currently supported.
  40. @item @code{union id} Anonymous union
  41. @table @asis
  42. @item @code{unsigned cpu_id}
  43. Should only be used if type is STARPU_CPU_WORKER.
  44. @item @code{unsigned cuda_id}
  45. Should only be used if type is STARPU_CUDA_WORKER.
  46. @item @code{cl_device_id opencl_id}
  47. Should only be used if type is STARPU_OPENCL_WORKER.
  48. @end table
  49. @end table
  50. @end deftp
  51. @deftp {Data Type} {struct starpu_conf}
  52. This structure is passed to the @code{starpu_init} function in order
  53. to configure StarPU. It has to be initialized with @code{starpu_conf_init}.
  54. When the default value is used, StarPU automatically selects the number of
  55. processing units and takes the default scheduling policy. The environment
  56. variables overwrite the equivalent parameters.
  57. @table @asis
  58. @item @code{const char *sched_policy_name} (default = NULL)
  59. This is the name of the scheduling policy. This can also be specified
  60. with the @code{STARPU_SCHED} environment variable.
  61. @item @code{struct starpu_sched_policy *sched_policy} (default = NULL)
  62. This is the definition of the scheduling policy. This field is ignored
  63. if @code{sched_policy_name} is set.
  64. @item @code{int ncpus} (default = -1)
  65. This is the number of CPU cores that StarPU can use. This can also be
  66. specified with the @code{STARPU_NCPU} environment variable.
  67. @item @code{int ncuda} (default = -1)
  68. This is the number of CUDA devices that StarPU can use. This can also
  69. be specified with the @code{STARPU_NCUDA} environment variable.
  70. @item @code{int nopencl} (default = -1)
  71. This is the number of OpenCL devices that StarPU can use. This can
  72. also be specified with the @code{STARPU_NOPENCL} environment variable.
  73. @item @code{unsigned use_explicit_workers_bindid} (default = 0)
  74. If this flag is set, the @code{workers_bindid} array indicates where the
  75. different workers are bound, otherwise StarPU automatically selects where to
  76. bind the different workers. This can also be specified with the
  77. @code{STARPU_WORKERS_CPUID} environment variable.
  78. @item @code{unsigned workers_bindid[STARPU_NMAXWORKERS]}
  79. If the @code{use_explicit_workers_bindid} flag is set, this array
  80. indicates where to bind the different workers. The i-th entry of the
  81. @code{workers_bindid} indicates the logical identifier of the
  82. processor which should execute the i-th worker. Note that the logical
  83. ordering of the CPUs is either determined by the OS, or provided by
  84. the @code{hwloc} library in case it is available.
  85. @item @code{unsigned use_explicit_workers_cuda_gpuid} (default = 0)
  86. If this flag is set, the CUDA workers will be attached to the CUDA devices
  87. specified in the @code{workers_cuda_gpuid} array. Otherwise, StarPU affects the
  88. CUDA devices in a round-robin fashion. This can also be specified with the
  89. @code{STARPU_WORKERS_CUDAID} environment variable.
  90. @item @code{unsigned workers_cuda_gpuid[STARPU_NMAXWORKERS]}
  91. If the @code{use_explicit_workers_cuda_gpuid} flag is set, this array
  92. contains the logical identifiers of the CUDA devices (as used by
  93. @code{cudaGetDevice}).
  94. @item @code{unsigned use_explicit_workers_opencl_gpuid} (default = 0)
  95. If this flag is set, the OpenCL workers will be attached to the OpenCL devices
  96. specified in the @code{workers_opencl_gpuid} array. Otherwise, StarPU affects
  97. the OpenCL devices in a round-robin fashion. This can also be specified with
  98. the @code{STARPU_WORKERS_OPENCLID} environment variable.
  99. @item @code{unsigned workers_opencl_gpuid[STARPU_NMAXWORKERS]}
  100. If the @code{use_explicit_workers_opencl_gpuid} flag is set, this array
  101. contains the logical identifiers of the OpenCL devices to be used.
  102. @item @code{int calibrate} (default = 0)
  103. If this flag is set, StarPU will calibrate the performance models when
  104. executing tasks. If this value is equal to @code{-1}, the default value is
  105. used. If the value is equal to @code{1}, it will force continuing
  106. calibration. If the value is equal to @code{2}, the existing performance
  107. models will be overwritten. This can also be specified with the
  108. @code{STARPU_CALIBRATE} environment variable.
  109. @item @code{int bus_calibrate} (default = 0)
  110. If this flag is set, StarPU will recalibrate the bus. If this value is equal
  111. to @code{-1}, the default value is used. This can also be specified with the
  112. @code{STARPU_BUS_CALIBRATE} environment variable.
  113. @item @code{int single_combined_worker} (default = 0)
  114. By default, StarPU executes parallel tasks concurrently.
  115. Some parallel libraries (e.g. most OpenMP implementations) however do
  116. not support concurrent calls to parallel code. In such case, setting this flag
  117. makes StarPU only start one parallel task at a time (but other
  118. CPU and GPU tasks are not affected and can be run concurrently). The parallel
  119. task scheduler will however still however still try varying combined worker
  120. sizes to look for the most efficient ones.
  121. This can also be specified with the @code{STARPU_SINGLE_COMBINED_WORKER} environment variable.
  122. @item @code{int disable_asynchronous_copy} (default = 0)
  123. This flag should be set to 1 to disable asynchronous copies between
  124. CPUs and all accelerators. This can also be specified with the
  125. @code{STARPU_DISABLE_ASYNCHRONOUS_COPY} environment variable.
  126. The AMD implementation of OpenCL is known to
  127. fail when copying data asynchronously. When using this implementation,
  128. it is therefore necessary to disable asynchronous data transfers.
  129. This can also be specified at compilation time by giving to the
  130. configure script the option @code{--disable-asynchronous-copy}.
  131. @item @code{int disable_asynchronous_cuda_copy} (default = 0)
  132. This flag should be set to 1 to disable asynchronous copies between
  133. CPUs and CUDA accelerators. This can also be specified with the
  134. @code{STARPU_DISABLE_ASYNCHRONOUS_CUDA_COPY} environment variable.
  135. This can also be specified at compilation time by giving to the
  136. configure script the option @code{--disable-asynchronous-cuda-copy}.
  137. @item @code{int disable_asynchronous_opencl_copy} (default = 0)
  138. This flag should be set to 1 to disable asynchronous copies between
  139. CPUs and OpenCL accelerators. This can also be specified with the
  140. @code{STARPU_DISABLE_ASYNCHRONOUS_OPENCL_COPY} environment variable.
  141. The AMD implementation of OpenCL is known to
  142. fail when copying data asynchronously. When using this implementation,
  143. it is therefore necessary to disable asynchronous data transfers.
  144. This can also be specified at compilation time by giving to the
  145. configure script the option @code{--disable-asynchronous-opencl-copy}.
  146. @item @code{int *cuda_opengl_interoperability} (default = NULL)
  147. This can be set to an array of CUDA device identifiers for which
  148. @code{cudaGLSetGLDevice} should be called instead of @code{cudaSetDevice}. Its
  149. size is specified by the @code{n_cuda_opengl_interoperability} field below
  150. @item @code{int *n_cuda_opengl_interoperability} (default = 0)
  151. This has to be set to the size of the array pointed to by the
  152. @code{cuda_opengl_interoperability} field.
  153. @item @code{struct starpu_driver *not_launched_drivers}
  154. The drivers that should not be launched by StarPU.
  155. @item @code{unsigned n_not_launched_drivers}
  156. The number of StarPU drivers that should not be launched by StarPU.
  157. @item @code{trace_buffer_size}
  158. Specifies the buffer size used for FxT tracing. Starting from FxT version
  159. 0.2.12, the buffer will automatically be flushed when it fills in, but it may
  160. still be interesting to specify a bigger value to avoid any flushing (which
  161. would disturb the trace).
  162. @end table
  163. @end deftp
  164. @deftypefun int starpu_init ({struct starpu_conf *}@var{conf})
  165. This is StarPU initialization method, which must be called prior to any other
  166. StarPU call. It is possible to specify StarPU's configuration (e.g. scheduling
  167. policy, number of cores, ...) by passing a non-null argument. Default
  168. configuration is used if the passed argument is @code{NULL}.
  169. Upon successful completion, this function returns 0. Otherwise, @code{-ENODEV}
  170. indicates that no worker was available (so that StarPU was not initialized).
  171. @end deftypefun
  172. @deftypefun int starpu_conf_init ({struct starpu_conf *}@var{conf})
  173. This function initializes the @var{conf} structure passed as argument
  174. with the default values. In case some configuration parameters are already
  175. specified through environment variables, @code{starpu_conf_init} initializes
  176. the fields of the structure according to the environment variables. For
  177. instance if @code{STARPU_CALIBRATE} is set, its value is put in the
  178. @code{.calibrate} field of the structure passed as argument.
  179. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  180. indicates that the argument was NULL.
  181. @end deftypefun
  182. @deftypefun void starpu_shutdown (void)
  183. This is StarPU termination method. It must be called at the end of the
  184. application: statistics and other post-mortem debugging information are not
  185. guaranteed to be available until this method has been called.
  186. @end deftypefun
  187. @deftypefun int starpu_asynchronous_copy_disabled (void)
  188. Return 1 if asynchronous data transfers between CPU and accelerators
  189. are disabled.
  190. @end deftypefun
  191. @deftypefun int starpu_asynchronous_cuda_copy_disabled (void)
  192. Return 1 if asynchronous data transfers between CPU and CUDA accelerators
  193. are disabled.
  194. @end deftypefun
  195. @deftypefun int starpu_asynchronous_opencl_copy_disabled (void)
  196. Return 1 if asynchronous data transfers between CPU and OpenCL accelerators
  197. are disabled.
  198. @end deftypefun
  199. @node Standard memory library
  200. @section Standard memory library
  201. @defmac STARPU_MALLOC_PINNED
  202. Value passed to the function @code{starpu_malloc_flags} to
  203. indicate the memory allocation should be pinned.
  204. @end defmac
  205. @defmac STARPU_MALLOC_COUNT
  206. Value passed to the function @code{starpu_malloc_flags} to
  207. indicate the memory allocation should be in the limit defined by
  208. the environment variables @code{STARPU_LIMIT_CUDA_devid_MEM},
  209. @code{STARPU_LIMIT_CUDA_MEM}, @code{STARPU_LIMIT_OPENCL_devid_MEM},
  210. @code{STARPU_LIMIT_OPENCL_MEM} and @code{STARPU_LIMIT_CPU_MEM}
  211. (@pxref{Limit memory}). If no memory is available, it tries to reclaim
  212. memory from StarPU. Memory allocated this way needs to be freed by
  213. calling the @code{starpu_free_flags} function with the same flag.
  214. @end defmac
  215. @deftypefun int starpu_malloc_flags (void **@var{A}, size_t @var{dim}, int @var{flags})
  216. Performs a memory allocation based on the constraints defined by the
  217. given @var{flag}.
  218. @end deftypefun
  219. @deftypefun void starpu_malloc_set_align (size_t @var{align})
  220. This functions sets an alignment constraints for @code{starpu_malloc}
  221. allocations. @var{align} must be a power of two. This is for instance called
  222. automatically by the OpenCL driver to specify its own alignment constraints.
  223. @end deftypefun
  224. @deftypefun int starpu_malloc (void **@var{A}, size_t @var{dim})
  225. This function allocates data of the given size in main memory. It will also try to pin it in
  226. CUDA or OpenCL, so that data transfers from this buffer can be asynchronous, and
  227. thus permit data transfer and computation overlapping. The allocated buffer must
  228. be freed thanks to the @code{starpu_free} function.
  229. @end deftypefun
  230. @deftypefun int starpu_free (void *@var{A})
  231. This function frees memory which has previously been allocated with
  232. @code{starpu_malloc}.
  233. @end deftypefun
  234. @deftypefun int starpu_free_flags (void *@var{A}, size_t @var{dim}, int @var{flags})
  235. This function frees memory by specifying its size. The given
  236. @var{flags} should be consistent with the ones given to
  237. @code{starpu_malloc_flags} when allocating the memory.
  238. @end deftypefun
  239. @deftypefun ssize_t starpu_memory_get_available (unsigned @var{node})
  240. If a memory limit is defined on the given node (@pxref{Limit memory}),
  241. return the amount of available memory on the node. Otherwise return
  242. @code{-1}.
  243. @end deftypefun
  244. @node Workers' Properties
  245. @section Workers' Properties
  246. @deftp {Data Type} {enum starpu_archtype}
  247. The different values are:
  248. @table @asis
  249. @item @code{STARPU_CPU_WORKER}
  250. @item @code{STARPU_CUDA_WORKER}
  251. @item @code{STARPU_OPENCL_WORKER}
  252. @end table
  253. @end deftp
  254. @deftypefun unsigned starpu_worker_get_count (void)
  255. This function returns the number of workers (i.e. processing units executing
  256. StarPU tasks). The returned value should be at most @code{STARPU_NMAXWORKERS}.
  257. @end deftypefun
  258. @deftypefun int starpu_worker_get_count_by_type ({enum starpu_archtype} @var{type})
  259. Returns the number of workers of the given @var{type}. A positive
  260. (or @code{NULL}) value is returned in case of success, @code{-EINVAL} indicates that
  261. the type is not valid otherwise.
  262. @end deftypefun
  263. @deftypefun unsigned starpu_cpu_worker_get_count (void)
  264. This function returns the number of CPUs controlled by StarPU. The returned
  265. value should be at most @code{STARPU_MAXCPUS}.
  266. @end deftypefun
  267. @deftypefun unsigned starpu_cuda_worker_get_count (void)
  268. This function returns the number of CUDA devices controlled by StarPU. The returned
  269. value should be at most @code{STARPU_MAXCUDADEVS}.
  270. @end deftypefun
  271. @deftypefun unsigned starpu_opencl_worker_get_count (void)
  272. This function returns the number of OpenCL devices controlled by StarPU. The returned
  273. value should be at most @code{STARPU_MAXOPENCLDEVS}.
  274. @end deftypefun
  275. @deftypefun int starpu_worker_get_id (void)
  276. This function returns the identifier of the current worker, i.e the one associated to the calling
  277. thread. The returned value is either -1 if the current context is not a StarPU
  278. worker (i.e. when called from the application outside a task or a callback), or
  279. an integer between 0 and @code{starpu_worker_get_count() - 1}.
  280. @end deftypefun
  281. @deftypefun int starpu_worker_get_ids_by_type ({enum starpu_archtype} @var{type}, int *@var{workerids}, int @var{maxsize})
  282. This function gets the list of identifiers of workers with the given
  283. type. It fills the workerids array with the identifiers of the workers that have the type
  284. indicated in the first argument. The maxsize argument indicates the size of the
  285. workids array. The returned value gives the number of identifiers that were put
  286. in the array. @code{-ERANGE} is returned is maxsize is lower than the number of
  287. workers with the appropriate type: in that case, the array is filled with the
  288. maxsize first elements. To avoid such overflows, the value of maxsize can be
  289. chosen by the means of the @code{starpu_worker_get_count_by_type} function, or
  290. by passing a value greater or equal to @code{STARPU_NMAXWORKERS}.
  291. @end deftypefun
  292. @deftypefun int starpu_worker_get_by_type ({enum starpu_archtype} @var{type}, int @var{num})
  293. This returns the identifier of the @var{num}-th worker that has the specified type
  294. @var{type}. If there are no such worker, -1 is returned.
  295. @end deftypefun
  296. @deftypefun int starpu_worker_get_by_devid ({enum starpu_archtype} @var{type}, int @var{devid})
  297. This returns the identifier of the worker that has the specified type
  298. @var{type} and devid @var{devid} (which may not be the n-th, if some devices are
  299. skipped for instance). If there are no such worker, -1 is returned.
  300. @end deftypefun
  301. @deftypefun int starpu_worker_get_devid (int @var{id})
  302. This functions returns the device id of the given worker. The worker
  303. should be identified with the value returned by the @code{starpu_worker_get_id} function. In the case of a
  304. CUDA worker, this device identifier is the logical device identifier exposed by
  305. CUDA (used by the @code{cudaGetDevice} function for instance). The device
  306. identifier of a CPU worker is the logical identifier of the core on which the
  307. worker was bound; this identifier is either provided by the OS or by the
  308. @code{hwloc} library in case it is available.
  309. @end deftypefun
  310. @deftypefun {enum starpu_archtype} starpu_worker_get_type (int @var{id})
  311. This function returns the type of processing unit associated to a
  312. worker. The worker identifier is a value returned by the
  313. @code{starpu_worker_get_id} function). The returned value
  314. indicates the architecture of the worker: @code{STARPU_CPU_WORKER} for a CPU
  315. core, @code{STARPU_CUDA_WORKER} for a CUDA device, and
  316. @code{STARPU_OPENCL_WORKER} for a OpenCL device. The value returned for an invalid
  317. identifier is unspecified.
  318. @end deftypefun
  319. @deftypefun void starpu_worker_get_name (int @var{id}, char *@var{dst}, size_t @var{maxlen})
  320. This function allows to get the name of a given worker.
  321. StarPU associates a unique human readable string to each processing unit. This
  322. function copies at most the @var{maxlen} first bytes of the unique string
  323. associated to a worker identified by its identifier @var{id} into the
  324. @var{dst} buffer. The caller is responsible for ensuring that the @var{dst}
  325. is a valid pointer to a buffer of @var{maxlen} bytes at least. Calling this
  326. function on an invalid identifier results in an unspecified behaviour.
  327. @end deftypefun
  328. @deftypefun unsigned starpu_worker_get_memory_node (unsigned @var{workerid})
  329. This function returns the identifier of the memory node associated to the
  330. worker identified by @var{workerid}.
  331. @end deftypefun
  332. @deftp {Data Type} {enum starpu_node_kind}
  333. todo
  334. @table @asis
  335. @item @code{STARPU_UNUSED}
  336. @item @code{STARPU_CPU_RAM}
  337. @item @code{STARPU_CUDA_RAM}
  338. @item @code{STARPU_OPENCL_RAM}
  339. @end table
  340. @end deftp
  341. @deftypefun {enum starpu_node_kind} starpu_node_get_kind (unsigned @var{node})
  342. Returns the type of the given node as defined by @code{enum
  343. starpu_node_kind}. For example, when defining a new data interface,
  344. this function should be used in the allocation function to determine
  345. on which device the memory needs to be allocated.
  346. @end deftypefun
  347. @node Data Management
  348. @section Data Management
  349. @menu
  350. * Introduction to Data Management::
  351. * Basic Data Management API::
  352. * Access registered data from the application::
  353. @end menu
  354. This section describes the data management facilities provided by StarPU.
  355. We show how to use existing data interfaces in @ref{Data Interfaces}, but developers can
  356. design their own data interfaces if required.
  357. @node Introduction to Data Management
  358. @subsection Introduction
  359. Data management is done at a high-level in StarPU: rather than accessing a mere
  360. list of contiguous buffers, the tasks may manipulate data that are described by
  361. a high-level construct which we call data interface.
  362. An example of data interface is the "vector" interface which describes a
  363. contiguous data array on a spefic memory node. This interface is a simple
  364. structure containing the number of elements in the array, the size of the
  365. elements, and the address of the array in the appropriate address space (this
  366. address may be invalid if there is no valid copy of the array in the memory
  367. node). More informations on the data interfaces provided by StarPU are
  368. given in @ref{Data Interfaces}.
  369. When a piece of data managed by StarPU is used by a task, the task
  370. implementation is given a pointer to an interface describing a valid copy of
  371. the data that is accessible from the current processing unit.
  372. Every worker is associated to a memory node which is a logical abstraction of
  373. the address space from which the processing unit gets its data. For instance,
  374. the memory node associated to the different CPU workers represents main memory
  375. (RAM), the memory node associated to a GPU is DRAM embedded on the device.
  376. Every memory node is identified by a logical index which is accessible from the
  377. @code{starpu_worker_get_memory_node} function. When registering a piece of data
  378. to StarPU, the specified memory node indicates where the piece of data
  379. initially resides (we also call this memory node the home node of a piece of
  380. data).
  381. @node Basic Data Management API
  382. @subsection Basic Data Management API
  383. @deftp {Data Type} {enum starpu_access_mode}
  384. This datatype describes a data access mode. The different available modes are:
  385. @table @asis
  386. @item @code{STARPU_R}: read-only mode.
  387. @item @code{STARPU_W}: write-only mode.
  388. @item @code{STARPU_RW}: read-write mode.
  389. This is equivalent to @code{STARPU_R|STARPU_W}.
  390. @item @code{STARPU_SCRATCH}: scratch memory.
  391. A temporary buffer is allocated for the task, but StarPU does not
  392. enforce data consistency---i.e. each device has its own buffer,
  393. independently from each other (even for CPUs), and no data transfer is
  394. ever performed. This is useful for temporary variables to avoid
  395. allocating/freeing buffers inside each task.
  396. Currently, no behavior is defined concerning the relation with the
  397. @code{STARPU_R} and @code{STARPU_W} modes and the value provided at
  398. registration---i.e., the value of the scratch buffer is undefined at
  399. entry of the codelet function. It is being considered for future
  400. extensions at least to define the initial value. For now, data to be
  401. used in @code{SCRATCH} mode should be registered with node @code{-1} and
  402. a @code{NULL} pointer, since the value of the provided buffer is simply
  403. ignored for now.
  404. @item @code{STARPU_REDUX}: reduction mode. TODO!
  405. @end table
  406. @end deftp
  407. @deftp {Data Type} {starpu_data_handle_t}
  408. StarPU uses @code{starpu_data_handle_t} as an opaque handle to manage a piece of
  409. data. Once a piece of data has been registered to StarPU, it is associated to a
  410. @code{starpu_data_handle_t} which keeps track of the state of the piece of data
  411. over the entire machine, so that we can maintain data consistency and locate
  412. data replicates for instance.
  413. @end deftp
  414. @deftypefun void starpu_data_register (starpu_data_handle_t *@var{handleptr}, unsigned @var{home_node}, void *@var{data_interface}, {struct starpu_data_interface_ops} *@var{ops})
  415. Register a piece of data into the handle located at the @var{handleptr}
  416. address. The @var{data_interface} buffer contains the initial description of the
  417. data in the home node. The @var{ops} argument is a pointer to a structure
  418. describing the different methods used to manipulate this type of interface. See
  419. @ref{struct starpu_data_interface_ops} for more details on this structure.
  420. If @code{home_node} is -1, StarPU will automatically
  421. allocate the memory when it is used for the
  422. first time in write-only mode. Once such data handle has been automatically
  423. allocated, it is possible to access it using any access mode.
  424. Note that StarPU supplies a set of predefined types of interface (e.g. vector or
  425. matrix) which can be registered by the means of helper functions (e.g.
  426. @code{starpu_vector_data_register} or @code{starpu_matrix_data_register}).
  427. @end deftypefun
  428. @deftypefun void starpu_data_register_same ({starpu_data_handle_t *}@var{handledst}, starpu_data_handle_t @var{handlesrc})
  429. Register a new piece of data into the handle @var{handledst} with the
  430. same interface as the handle @var{handlesrc}.
  431. @end deftypefun
  432. @deftypefun void starpu_data_unregister (starpu_data_handle_t @var{handle})
  433. This function unregisters a data handle from StarPU. If the data was
  434. automatically allocated by StarPU because the home node was -1, all
  435. automatically allocated buffers are freed. Otherwise, a valid copy of the data
  436. is put back into the home node in the buffer that was initially registered.
  437. Using a data handle that has been unregistered from StarPU results in an
  438. undefined behaviour.
  439. @end deftypefun
  440. @deftypefun void starpu_data_unregister_no_coherency (starpu_data_handle_t @var{handle})
  441. This is the same as starpu_data_unregister, except that StarPU does not put back
  442. a valid copy into the home node, in the buffer that was initially registered.
  443. @end deftypefun
  444. @deftypefun void starpu_data_unregister_submit (starpu_data_handle_t @var{handle})
  445. Destroy the data handle once it is not needed anymore by any submitted
  446. task. No coherency is assumed.
  447. @end deftypefun
  448. @deftypefun void starpu_data_invalidate (starpu_data_handle_t @var{handle})
  449. Destroy all replicates of the data handle immediately. After data invalidation,
  450. the first access to the handle must be performed in write-only mode.
  451. Accessing an invalidated data in read-mode results in undefined
  452. behaviour.
  453. @end deftypefun
  454. @deftypefun void starpu_data_invalidate_submit (starpu_data_handle_t @var{handle})
  455. Submits invalidation of the data handle after completion of previously submitted tasks.
  456. @end deftypefun
  457. @c TODO create a specific sections about user interaction with the DSM ?
  458. @deftypefun void starpu_data_set_wt_mask (starpu_data_handle_t @var{handle}, uint32_t @var{wt_mask})
  459. This function sets the write-through mask of a given data, i.e. a bitmask of
  460. nodes where the data should be always replicated after modification. It also
  461. prevents the data from being evicted from these nodes when memory gets scarse.
  462. @end deftypefun
  463. @deftypefun int starpu_data_prefetch_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node}, unsigned @var{async})
  464. Issue a prefetch request for a given data to a given node, i.e.
  465. requests that the data be replicated to the given node, so that it is available
  466. there for tasks. If the @var{async} parameter is 0, the call will block until
  467. the transfer is achieved, else the call will return as soon as the request is
  468. scheduled (which may however have to wait for a task completion).
  469. @end deftypefun
  470. @deftypefun starpu_data_handle_t starpu_data_lookup ({const void *}@var{ptr})
  471. Return the handle corresponding to the data pointed to by the @var{ptr}
  472. host pointer.
  473. @end deftypefun
  474. @deftypefun int starpu_data_request_allocation (starpu_data_handle_t @var{handle}, unsigned @var{node})
  475. Explicitly ask StarPU to allocate room for a piece of data on the specified
  476. memory node.
  477. @end deftypefun
  478. @deftypefun void starpu_data_query_status (starpu_data_handle_t @var{handle}, int @var{memory_node}, {int *}@var{is_allocated}, {int *}@var{is_valid}, {int *}@var{is_requested})
  479. Query the status of the handle on the specified memory node.
  480. @end deftypefun
  481. @deftypefun void starpu_data_advise_as_important (starpu_data_handle_t @var{handle}, unsigned @var{is_important})
  482. This function allows to specify that a piece of data can be discarded
  483. without impacting the application.
  484. @end deftypefun
  485. @deftypefun void starpu_data_set_reduction_methods (starpu_data_handle_t @var{handle}, {struct starpu_codelet *}@var{redux_cl}, {struct starpu_codelet *}@var{init_cl})
  486. This sets the codelets to be used for the @var{handle} when it is accessed in
  487. REDUX mode. Per-worker buffers will be initialized with the @var{init_cl}
  488. codelet, and reduction between per-worker buffers will be done with the
  489. @var{redux_cl} codelet.
  490. @end deftypefun
  491. @node Access registered data from the application
  492. @subsection Access registered data from the application
  493. @deftypefun int starpu_data_acquire (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode})
  494. The application must call this function prior to accessing registered data from
  495. main memory outside tasks. StarPU ensures that the application will get an
  496. up-to-date copy of the data in main memory located where the data was
  497. originally registered, and that all concurrent accesses (e.g. from tasks) will
  498. be consistent with the access mode specified in the @var{mode} argument.
  499. @code{starpu_data_release} must be called once the application does not need to
  500. access the piece of data anymore. Note that implicit data
  501. dependencies are also enforced by @code{starpu_data_acquire}, i.e.
  502. @code{starpu_data_acquire} will wait for all tasks scheduled to work on
  503. the data, unless they have been disabled explictly by calling
  504. @code{starpu_data_set_default_sequential_consistency_flag} or
  505. @code{starpu_data_set_sequential_consistency_flag}.
  506. @code{starpu_data_acquire} is a blocking call, so that it cannot be called from
  507. tasks or from their callbacks (in that case, @code{starpu_data_acquire} returns
  508. @code{-EDEADLK}). Upon successful completion, this function returns 0.
  509. @end deftypefun
  510. @deftypefun int starpu_data_acquire_cb (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  511. @code{starpu_data_acquire_cb} is the asynchronous equivalent of
  512. @code{starpu_data_acquire}. When the data specified in the first argument is
  513. available in the appropriate access mode, the callback function is executed.
  514. The application may access the requested data during the execution of this
  515. callback. The callback function must call @code{starpu_data_release} once the
  516. application does not need to access the piece of data anymore.
  517. Note that implicit data dependencies are also enforced by
  518. @code{starpu_data_acquire_cb} in case they are not disabled.
  519. Contrary to @code{starpu_data_acquire}, this function is non-blocking and may
  520. be called from task callbacks. Upon successful completion, this function
  521. returns 0.
  522. @end deftypefun
  523. @deftypefun int starpu_data_acquire_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node}, {enum starpu_access_mode} @var{mode})
  524. This is the same as @code{starpu_data_acquire}, except that the data will be
  525. available on the given memory node instead of main memory.
  526. @end deftypefun
  527. @deftypefun int starpu_data_acquire_on_node_cb (starpu_data_handle_t @var{handle}, unsigned @var{node}, {enum starpu_access_mode} @var{mode}, void (*@var{callback})(void *), void *@var{arg})
  528. This is the same as @code{starpu_data_acquire_cb}, except that the data will be
  529. available on the given memory node instead of main memory.
  530. @end deftypefun
  531. @defmac STARPU_DATA_ACQUIRE_CB (starpu_data_handle_t @var{handle}, {enum starpu_access_mode} @var{mode}, code)
  532. @code{STARPU_DATA_ACQUIRE_CB} is the same as @code{starpu_data_acquire_cb},
  533. except that the code to be executed in a callback is directly provided as a
  534. macro parameter, and the data handle is automatically released after it. This
  535. permits to easily execute code which depends on the value of some registered
  536. data. This is non-blocking too and may be called from task callbacks.
  537. @end defmac
  538. @deftypefun void starpu_data_release (starpu_data_handle_t @var{handle})
  539. This function releases the piece of data acquired by the application either by
  540. @code{starpu_data_acquire} or by @code{starpu_data_acquire_cb}.
  541. @end deftypefun
  542. @deftypefun void starpu_data_release_on_node (starpu_data_handle_t @var{handle}, unsigned @var{node})
  543. This is the same as @code{starpu_data_release}, except that the data will be
  544. available on the given memory node instead of main memory.
  545. @end deftypefun
  546. @node Data Interfaces
  547. @section Data Interfaces
  548. @menu
  549. * Registering Data::
  550. * Accessing Data Interfaces::
  551. * Defining Interface::
  552. @end menu
  553. @node Registering Data
  554. @subsection Registering Data
  555. There are several ways to register a memory region so that it can be managed by
  556. StarPU. The functions below allow the registration of vectors, 2D matrices, 3D
  557. matrices as well as BCSR and CSR sparse matrices.
  558. @deftypefun void starpu_void_data_register ({starpu_data_handle_t *}@var{handle})
  559. Register a void interface. There is no data really associated to that
  560. interface, but it may be used as a synchronization mechanism. It also
  561. permits to express an abstract piece of data that is managed by the
  562. application internally: this makes it possible to forbid the
  563. concurrent execution of different tasks accessing the same "void" data
  564. in read-write concurrently.
  565. @end deftypefun
  566. @deftypefun void starpu_variable_data_register ({starpu_data_handle_t *}@var{handle}, unsigned @var{home_node}, uintptr_t @var{ptr}, size_t @var{size})
  567. Register the @var{size}-byte element pointed to by @var{ptr}, which is
  568. typically a scalar, and initialize @var{handle} to represent this data
  569. item.
  570. @cartouche
  571. @smallexample
  572. float var;
  573. starpu_data_handle_t var_handle;
  574. starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
  575. @end smallexample
  576. @end cartouche
  577. @end deftypefun
  578. @deftypefun void starpu_vector_data_register ({starpu_data_handle_t *}@var{handle}, unsigned @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{nx}, size_t @var{elemsize})
  579. Register the @var{nx} @var{elemsize}-byte elements pointed to by
  580. @var{ptr} and initialize @var{handle} to represent it.
  581. @cartouche
  582. @smallexample
  583. float vector[NX];
  584. starpu_data_handle_t vector_handle;
  585. starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,
  586. sizeof(vector[0]));
  587. @end smallexample
  588. @end cartouche
  589. @end deftypefun
  590. @deftypefun void starpu_matrix_data_register ({starpu_data_handle_t *}@var{handle}, unsigned @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ld}, uint32_t @var{nx}, uint32_t @var{ny}, size_t @var{elemsize})
  591. Register the @var{nx}x@var{ny} 2D matrix of @var{elemsize}-byte elements
  592. pointed by @var{ptr} and initialize @var{handle} to represent it.
  593. @var{ld} specifies the number of elements between rows.
  594. a value greater than @var{nx} adds padding, which can be useful for
  595. alignment purposes.
  596. @cartouche
  597. @smallexample
  598. float *matrix;
  599. starpu_data_handle_t matrix_handle;
  600. matrix = (float*)malloc(width * height * sizeof(float));
  601. starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,
  602. width, width, height, sizeof(float));
  603. @end smallexample
  604. @end cartouche
  605. @end deftypefun
  606. @deftypefun void starpu_block_data_register ({starpu_data_handle_t *}@var{handle}, unsigned @var{home_node}, uintptr_t @var{ptr}, uint32_t @var{ldy}, uint32_t @var{ldz}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{nz}, size_t @var{elemsize})
  607. Register the @var{nx}x@var{ny}x@var{nz} 3D matrix of @var{elemsize}-byte
  608. elements pointed by @var{ptr} and initialize @var{handle} to represent
  609. it. Again, @var{ldy} and @var{ldz} specify the number of elements
  610. between rows and between z planes.
  611. @cartouche
  612. @smallexample
  613. float *block;
  614. starpu_data_handle_t block_handle;
  615. block = (float*)malloc(nx*ny*nz*sizeof(float));
  616. starpu_block_data_register(&block_handle, 0, (uintptr_t)block,
  617. nx, nx*ny, nx, ny, nz, sizeof(float));
  618. @end smallexample
  619. @end cartouche
  620. @end deftypefun
  621. @deftypefun void starpu_bcsr_data_register (starpu_data_handle_t *@var{handle}, unsigned @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, uint32_t @var{r}, uint32_t @var{c}, size_t @var{elemsize})
  622. This variant of @code{starpu_data_register} uses the BCSR (Blocked
  623. Compressed Sparse Row Representation) sparse matrix interface.
  624. Register the sparse matrix made of @var{nnz} non-zero blocks of elements of size
  625. @var{elemsize} stored in @var{nzval} and initializes @var{handle} to represent
  626. it. Blocks have size @var{r} * @var{c}. @var{nrow} is the number of rows (in
  627. terms of blocks), @code{colind[i]} is the block-column index for block @code{i}
  628. in @code{nzval}, @code{rowptr[i]} is the block-index (in nzval) of the first block of row @code{i}.
  629. @var{firstentry} is the index of the first entry of the given arrays (usually 0
  630. or 1).
  631. @end deftypefun
  632. @deftypefun void starpu_csr_data_register (starpu_data_handle_t *@var{handle}, unsigned @var{home_node}, uint32_t @var{nnz}, uint32_t @var{nrow}, uintptr_t @var{nzval}, uint32_t *@var{colind}, uint32_t *@var{rowptr}, uint32_t @var{firstentry}, size_t @var{elemsize})
  633. This variant of @code{starpu_data_register} uses the CSR (Compressed
  634. Sparse Row Representation) sparse matrix interface.
  635. TODO
  636. @end deftypefun
  637. @deftypefun void starpu_coo_data_register (starpu_data_handle_t *@var{handleptr}, unsigned @var{home_node}, uint32_t @var{nx}, uint32_t @var{ny}, uint32_t @var{n_values}, uint32_t *@var{columns}, uint32_t *@var{rows}, uintptr_t @var{values}, size_t @var{elemsize});
  638. Register the @var{nx}x@var{ny} 2D matrix given in the COO format, using the
  639. @var{columns}, @var{rows}, @var{values} arrays, which must have @var{n_values}
  640. elements of size @var{elemsize}. Initialize @var{handleptr}.
  641. @end deftypefun
  642. @deftypefun {void *} starpu_data_get_interface_on_node (starpu_data_handle_t @var{handle}, unsigned @var{memory_node})
  643. Return the interface associated with @var{handle} on @var{memory_node}.
  644. @end deftypefun
  645. @node Accessing Data Interfaces
  646. @subsection Accessing Data Interfaces
  647. Each data interface is provided with a set of field access functions.
  648. The ones using a @code{void *} parameter aimed to be used in codelet
  649. implementations (see for example the code in @ref{Vector Scaling Using StarPU's API}).
  650. @deftp {Data Type} {enum starpu_data_interface_id}
  651. The different values are:
  652. @table @asis
  653. @item @code{STARPU_MATRIX_INTERFACE_ID}
  654. @item @code{STARPU_BLOCK_INTERFACE_ID}
  655. @item @code{STARPU_VECTOR_INTERFACE_ID}
  656. @item @code{STARPU_CSR_INTERFACE_ID}
  657. @item @code{STARPU_BCSR_INTERFACE_ID}
  658. @item @code{STARPU_VARIABLE_INTERFACE_ID}
  659. @item @code{STARPU_VOID_INTERFACE_ID}
  660. @item @code{STARPU_MULTIFORMAT_INTERFACE_ID}
  661. @item @code{STARPU_COO_INTERCACE_ID}
  662. @item @code{STARPU_NINTERFACES_ID}: number of data interfaces
  663. @end table
  664. @end deftp
  665. @menu
  666. * Accessing Handle::
  667. * Accessing Variable Data Interfaces::
  668. * Accessing Vector Data Interfaces::
  669. * Accessing Matrix Data Interfaces::
  670. * Accessing Block Data Interfaces::
  671. * Accessing BCSR Data Interfaces::
  672. * Accessing CSR Data Interfaces::
  673. * Accessing COO Data Interfaces::
  674. @end menu
  675. @node Accessing Handle
  676. @subsubsection Handle
  677. @deftypefun {void *} starpu_handle_to_pointer (starpu_data_handle_t @var{handle}, unsigned @var{node})
  678. Return the pointer associated with @var{handle} on node @var{node} or
  679. @code{NULL} if @var{handle}'s interface does not support this
  680. operation or data for this handle is not allocated on that node.
  681. @end deftypefun
  682. @deftypefun {void *} starpu_handle_get_local_ptr (starpu_data_handle_t @var{handle})
  683. Return the local pointer associated with @var{handle} or @code{NULL}
  684. if @var{handle}'s interface does not have data allocated locally
  685. @end deftypefun
  686. @deftypefun {enum starpu_data_interface_id} starpu_handle_get_interface_id (starpu_data_handle_t @var{handle})
  687. Return the unique identifier of the interface associated with the given @var{handle}.
  688. @end deftypefun
  689. @deftypefun size_t starpu_handle_get_size (starpu_data_handle_t @var{handle})
  690. Return the size of the data associated with @var{handle}
  691. @end deftypefun
  692. @deftypefun int starpu_handle_pack_data (starpu_data_handle_t @var{handle}, {void **}@var{ptr}, {starpu_ssize_t *}@var{count})
  693. Execute the packing operation of the interface of the data registered
  694. at @var{handle} (@pxref{struct starpu_data_interface_ops}). This
  695. packing operation must allocate a buffer large enough at @var{ptr} and
  696. copy into the newly allocated buffer the data associated to
  697. @var{handle}. @var{count} will be set to the size of the allocated
  698. buffer.
  699. If @var{ptr} is @code{NULL}, the function should not copy the data in the
  700. buffer but just set @var{count} to the size of the buffer which
  701. would have been allocated. The special value @code{-1} indicates the
  702. size is yet unknown.
  703. @end deftypefun
  704. @deftypefun int starpu_handle_unpack_data (starpu_data_handle_t @var{handle}, {void *}@var{ptr}, size_t @var{count})
  705. Unpack in @var{handle} the data located at @var{ptr} of size
  706. @var{count} as described by the interface of the data. The interface
  707. registered at @var{handle} must define a unpacking operation
  708. (@pxref{struct starpu_data_interface_ops}). The memory at the address @code{ptr}
  709. is freed after calling the data unpacking operation.
  710. @end deftypefun
  711. @node Accessing Variable Data Interfaces
  712. @subsubsection Variable Data Interfaces
  713. @deftypefun size_t starpu_variable_get_elemsize (starpu_data_handle_t @var{handle})
  714. Return the size of the variable designated by @var{handle}.
  715. @end deftypefun
  716. @deftypefun uintptr_t starpu_variable_get_local_ptr (starpu_data_handle_t @var{handle})
  717. Return a pointer to the variable designated by @var{handle}.
  718. @end deftypefun
  719. @defmac STARPU_VARIABLE_GET_PTR ({void *}@var{interface})
  720. Return a pointer to the variable designated by @var{interface}.
  721. @end defmac
  722. @defmac STARPU_VARIABLE_GET_ELEMSIZE ({void *}@var{interface})
  723. Return the size of the variable designated by @var{interface}.
  724. @end defmac
  725. @defmac STARPU_VARIABLE_GET_DEV_HANDLE ({void *}@var{interface})
  726. Return a device handle for the variable designated by @var{interface}, to be
  727. used on OpenCL. The offset documented below has to be used in addition to this.
  728. @end defmac
  729. @defmac STARPU_VARIABLE_GET_OFFSET ({void *}@var{interface})
  730. Return the offset in the variable designated by @var{interface}, to be used
  731. with the device handle.
  732. @end defmac
  733. @node Accessing Vector Data Interfaces
  734. @subsubsection Vector Data Interfaces
  735. @deftypefun uint32_t starpu_vector_get_nx (starpu_data_handle_t @var{handle})
  736. Return the number of elements registered into the array designated by @var{handle}.
  737. @end deftypefun
  738. @deftypefun size_t starpu_vector_get_elemsize (starpu_data_handle_t @var{handle})
  739. Return the size of each element of the array designated by @var{handle}.
  740. @end deftypefun
  741. @deftypefun uintptr_t starpu_vector_get_local_ptr (starpu_data_handle_t @var{handle})
  742. Return the local pointer associated with @var{handle}.
  743. @end deftypefun
  744. @defmac STARPU_VECTOR_GET_PTR ({void *}@var{interface})
  745. Return a pointer to the array designated by @var{interface}, valid on CPUs and
  746. CUDA only. For OpenCL, the device handle and offset need to be used instead.
  747. @end defmac
  748. @defmac STARPU_VECTOR_GET_DEV_HANDLE ({void *}@var{interface})
  749. Return a device handle for the array designated by @var{interface}, to be used on OpenCL. the offset
  750. documented below has to be used in addition to this.
  751. @end defmac
  752. @defmac STARPU_VECTOR_GET_OFFSET ({void *}@var{interface})
  753. Return the offset in the array designated by @var{interface}, to be used with the device handle.
  754. @end defmac
  755. @defmac STARPU_VECTOR_GET_NX ({void *}@var{interface})
  756. Return the number of elements registered into the array designated by @var{interface}.
  757. @end defmac
  758. @defmac STARPU_VECTOR_GET_ELEMSIZE ({void *}@var{interface})
  759. Return the size of each element of the array designated by @var{interface}.
  760. @end defmac
  761. @node Accessing Matrix Data Interfaces
  762. @subsubsection Matrix Data Interfaces
  763. @deftypefun uint32_t starpu_matrix_get_nx (starpu_data_handle_t @var{handle})
  764. Return the number of elements on the x-axis of the matrix designated by @var{handle}.
  765. @end deftypefun
  766. @deftypefun uint32_t starpu_matrix_get_ny (starpu_data_handle_t @var{handle})
  767. Return the number of elements on the y-axis of the matrix designated by
  768. @var{handle}.
  769. @end deftypefun
  770. @deftypefun uint32_t starpu_matrix_get_local_ld (starpu_data_handle_t @var{handle})
  771. Return the number of elements between each row of the matrix designated by
  772. @var{handle}. Maybe be equal to nx when there is no padding.
  773. @end deftypefun
  774. @deftypefun uintptr_t starpu_matrix_get_local_ptr (starpu_data_handle_t @var{handle})
  775. Return the local pointer associated with @var{handle}.
  776. @end deftypefun
  777. @deftypefun size_t starpu_matrix_get_elemsize (starpu_data_handle_t @var{handle})
  778. Return the size of the elements registered into the matrix designated by
  779. @var{handle}.
  780. @end deftypefun
  781. @defmac STARPU_MATRIX_GET_PTR ({void *}@var{interface})
  782. Return a pointer to the matrix designated by @var{interface}, valid on CPUs and
  783. CUDA devices only. For OpenCL devices, the device handle and offset need to be
  784. used instead.
  785. @end defmac
  786. @defmac STARPU_MATRIX_GET_DEV_HANDLE ({void *}@var{interface})
  787. Return a device handle for the matrix designated by @var{interface}, to be used
  788. on OpenCL. The offset documented below has to be used in addition to this.
  789. @end defmac
  790. @defmac STARPU_MATRIX_GET_OFFSET ({void *}@var{interface})
  791. Return the offset in the matrix designated by @var{interface}, to be used with
  792. the device handle.
  793. @end defmac
  794. @defmac STARPU_MATRIX_GET_NX ({void *}@var{interface})
  795. Return the number of elements on the x-axis of the matrix designated by
  796. @var{interface}.
  797. @end defmac
  798. @defmac STARPU_MATRIX_GET_NY ({void *}@var{interface})
  799. Return the number of elements on the y-axis of the matrix designated by
  800. @var{interface}.
  801. @end defmac
  802. @defmac STARPU_MATRIX_GET_LD ({void *}@var{interface})
  803. Return the number of elements between each row of the matrix designated by
  804. @var{interface}. May be equal to nx when there is no padding.
  805. @end defmac
  806. @defmac STARPU_MATRIX_GET_ELEMSIZE ({void *}@var{interface})
  807. Return the size of the elements registered into the matrix designated by
  808. @var{interface}.
  809. @end defmac
  810. @node Accessing Block Data Interfaces
  811. @subsubsection Block Data Interfaces
  812. @deftypefun uint32_t starpu_block_get_nx (starpu_data_handle_t @var{handle})
  813. Return the number of elements on the x-axis of the block designated by @var{handle}.
  814. @end deftypefun
  815. @deftypefun uint32_t starpu_block_get_ny (starpu_data_handle_t @var{handle})
  816. Return the number of elements on the y-axis of the block designated by @var{handle}.
  817. @end deftypefun
  818. @deftypefun uint32_t starpu_block_get_nz (starpu_data_handle_t @var{handle})
  819. Return the number of elements on the z-axis of the block designated by @var{handle}.
  820. @end deftypefun
  821. @deftypefun uint32_t starpu_block_get_local_ldy (starpu_data_handle_t @var{handle})
  822. Return the number of elements between each row of the block designated by
  823. @var{handle}, in the format of the current memory node.
  824. @end deftypefun
  825. @deftypefun uint32_t starpu_block_get_local_ldz (starpu_data_handle_t @var{handle})
  826. Return the number of elements between each z plane of the block designated by
  827. @var{handle}, in the format of the current memory node.
  828. @end deftypefun
  829. @deftypefun uintptr_t starpu_block_get_local_ptr (starpu_data_handle_t @var{handle})
  830. Return the local pointer associated with @var{handle}.
  831. @end deftypefun
  832. @deftypefun size_t starpu_block_get_elemsize (starpu_data_handle_t @var{handle})
  833. Return the size of the elements of the block designated by @var{handle}.
  834. @end deftypefun
  835. @defmac STARPU_BLOCK_GET_PTR ({void *}@var{interface})
  836. Return a pointer to the block designated by @var{interface}.
  837. @end defmac
  838. @defmac STARPU_BLOCK_GET_DEV_HANDLE ({void *}@var{interface})
  839. Return a device handle for the block designated by @var{interface}, to be used
  840. on OpenCL. The offset document below has to be used in addition to this.
  841. @end defmac
  842. @defmac STARPU_BLOCK_GET_OFFSET ({void *}@var{interface})
  843. Return the offset in the block designated by @var{interface}, to be used with
  844. the device handle.
  845. @end defmac
  846. @defmac STARPU_BLOCK_GET_NX ({void *}@var{interface})
  847. Return the number of elements on the x-axis of the block designated by @var{handle}.
  848. @end defmac
  849. @defmac STARPU_BLOCK_GET_NY ({void *}@var{interface})
  850. Return the number of elements on the y-axis of the block designated by @var{handle}.
  851. @end defmac
  852. @defmac STARPU_BLOCK_GET_NZ ({void *}@var{interface})
  853. Return the number of elements on the z-axis of the block designated by @var{handle}.
  854. @end defmac
  855. @defmac STARPU_BLOCK_GET_LDY ({void *}@var{interface})
  856. Return the number of elements between each row of the block designated by
  857. @var{interface}. May be equal to nx when there is no padding.
  858. @end defmac
  859. @defmac STARPU_BLOCK_GET_LDZ ({void *}@var{interface})
  860. Return the number of elements between each z plane of the block designated by
  861. @var{interface}. May be equal to nx*ny when there is no padding.
  862. @end defmac
  863. @defmac STARPU_BLOCK_GET_ELEMSIZE ({void *}@var{interface})
  864. Return the size of the elements of the matrix designated by @var{interface}.
  865. @end defmac
  866. @node Accessing BCSR Data Interfaces
  867. @subsubsection BCSR Data Interfaces
  868. @deftypefun uint32_t starpu_bcsr_get_nnz (starpu_data_handle_t @var{handle})
  869. Return the number of non-zero elements in the matrix designated by @var{handle}.
  870. @end deftypefun
  871. @deftypefun uint32_t starpu_bcsr_get_nrow (starpu_data_handle_t @var{handle})
  872. Return the number of rows (in terms of blocks of size r*c) in the matrix
  873. designated by @var{handle}.
  874. @end deftypefun
  875. @deftypefun uint32_t starpu_bcsr_get_firstentry (starpu_data_handle_t @var{handle})
  876. Return the index at which all arrays (the column indexes, the row pointers...)
  877. of the matrix desginated by @var{handle} start.
  878. @end deftypefun
  879. @deftypefun uintptr_t starpu_bcsr_get_local_nzval (starpu_data_handle_t @var{handle})
  880. Return a pointer to the non-zero values of the matrix designated by @var{handle}.
  881. @end deftypefun
  882. @deftypefun {uint32_t *} starpu_bcsr_get_local_colind (starpu_data_handle_t @var{handle})
  883. Return a pointer to the column index, which holds the positions of the non-zero
  884. entries in the matrix designated by @var{handle}.
  885. @end deftypefun
  886. @deftypefun {uint32_t *} starpu_bcsr_get_local_rowptr (starpu_data_handle_t @var{handle})
  887. Return the row pointer array of the matrix designated by @var{handle}.
  888. @end deftypefun
  889. @deftypefun uint32_t starpu_bcsr_get_r (starpu_data_handle_t @var{handle})
  890. Return the number of rows in a block.
  891. @end deftypefun
  892. @deftypefun uint32_t starpu_bcsr_get_c (starpu_data_handle_t @var{handle})
  893. Return the numberof columns in a block.
  894. @end deftypefun
  895. @deftypefun size_t starpu_bcsr_get_elemsize (starpu_data_handle_t @var{handle})
  896. Return the size of the elements in the matrix designated by @var{handle}.
  897. @end deftypefun
  898. @defmac STARPU_BCSR_GET_NNZ ({void *}@var{interface})
  899. Return the number of non-zero values in the matrix designated by @var{interface}.
  900. @end defmac
  901. @defmac STARPU_BCSR_GET_NZVAL ({void *}@var{interface})
  902. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  903. @end defmac
  904. @defmac STARPU_BCSR_GET_NZVAL_DEV_HANDLE ({void *}@var{interface})
  905. Return a device handle for the array of non-zero values in the matrix designated
  906. by @var{interface}. The offset documented below has to be used in addition to
  907. this.
  908. @end defmac
  909. @defmac STARPU_BCSR_GET_COLIND ({void *}@var{interface})
  910. Return a pointer to the column index of the matrix designated by @var{interface}.
  911. @end defmac
  912. @defmac STARPU_BCSR_GET_COLIND_DEV_HANDLE ({void *}@var{interface})
  913. Return a device handle for the column index of the matrix designated by
  914. @var{interface}. The offset documented below has to be used in addition to
  915. this.
  916. @end defmac
  917. @defmac STARPU_BCSR_GET_ROWPTR ({void *}@var{interface})
  918. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  919. @end defmac
  920. @defmac STARPU_CSR_GET_ROWPTR_DEV_HANDLE ({void *}@var{interface})
  921. Return a device handle for the row pointer array of the matrix designated by
  922. @var{interface}. The offset documented below has to be used in addition to
  923. this.
  924. @end defmac
  925. @defmac STARPU_BCSR_GET_OFFSET ({void *}@var{interface})
  926. Return the offset in the arrays (coling, rowptr, nzval) of the matrix
  927. designated by @var{interface}, to be used with the device handles.
  928. @end defmac
  929. @node Accessing CSR Data Interfaces
  930. @subsubsection CSR Data Interfaces
  931. @deftypefun uint32_t starpu_csr_get_nnz (starpu_data_handle_t @var{handle})
  932. Return the number of non-zero values in the matrix designated by @var{handle}.
  933. @end deftypefun
  934. @deftypefun uint32_t starpu_csr_get_nrow (starpu_data_handle_t @var{handle})
  935. Return the size of the row pointer array of the matrix designated by @var{handle}.
  936. @end deftypefun
  937. @deftypefun uint32_t starpu_csr_get_firstentry (starpu_data_handle_t @var{handle})
  938. Return the index at which all arrays (the column indexes, the row pointers...)
  939. of the matrix designated by @var{handle} start.
  940. @end deftypefun
  941. @deftypefun uintptr_t starpu_csr_get_local_nzval (starpu_data_handle_t @var{handle})
  942. Return a local pointer to the non-zero values of the matrix designated by @var{handle}.
  943. @end deftypefun
  944. @deftypefun {uint32_t *} starpu_csr_get_local_colind (starpu_data_handle_t @var{handle})
  945. Return a local pointer to the column index of the matrix designated by @var{handle}.
  946. @end deftypefun
  947. @deftypefun {uint32_t *} starpu_csr_get_local_rowptr (starpu_data_handle_t @var{handle})
  948. Return a local pointer to the row pointer array of the matrix designated by @var{handle}.
  949. @end deftypefun
  950. @deftypefun size_t starpu_csr_get_elemsize (starpu_data_handle_t @var{handle})
  951. Return the size of the elements registered into the matrix designated by @var{handle}.
  952. @end deftypefun
  953. @defmac STARPU_CSR_GET_NNZ ({void *}@var{interface})
  954. Return the number of non-zero values in the matrix designated by @var{interface}.
  955. @end defmac
  956. @defmac STARPU_CSR_GET_NROW ({void *}@var{interface})
  957. Return the size of the row pointer array of the matrix designated by @var{interface}.
  958. @end defmac
  959. @defmac STARPU_CSR_GET_NZVAL ({void *}@var{interface})
  960. Return a pointer to the non-zero values of the matrix designated by @var{interface}.
  961. @end defmac
  962. @defmac STARPU_CSR_GET_NZVAL_DEV_HANDLE ({void *}@var{interface})
  963. Return a device handle for the array of non-zero values in the matrix designated
  964. by @var{interface}. The offset documented below has to be used in addition to
  965. this.
  966. @end defmac
  967. @defmac STARPU_CSR_GET_COLIND ({void *}@var{interface})
  968. Return a pointer to the column index of the matrix designated by @var{interface}.
  969. @end defmac
  970. @defmac STARPU_CSR_GET_COLIND_DEV_HANDLE ({void *}@var{interface})
  971. Return a device handle for the column index of the matrix designated by
  972. @var{interface}. The offset documented below has to be used in addition to
  973. this.
  974. @end defmac
  975. @defmac STARPU_CSR_GET_ROWPTR ({void *}@var{interface})
  976. Return a pointer to the row pointer array of the matrix designated by @var{interface}.
  977. @end defmac
  978. @defmac STARPU_CSR_GET_ROWPTR_DEV_HANDLE ({void *}@var{interface})
  979. Return a device handle for the row pointer array of the matrix designated by
  980. @var{interface}. The offset documented below has to be used in addition to
  981. this.
  982. @end defmac
  983. @defmac STARPU_CSR_GET_OFFSET ({void *}@var{interface})
  984. Return the offset in the arrays (colind, rowptr, nzval) of the matrix
  985. designated by @var{interface}, to be used with the device handles.
  986. @end defmac
  987. @defmac STARPU_CSR_GET_FIRSTENTRY ({void *}@var{interface})
  988. Return the index at which all arrays (the column indexes, the row pointers...)
  989. of the @var{interface} start.
  990. @end defmac
  991. @defmac STARPU_CSR_GET_ELEMSIZE ({void *}@var{interface})
  992. Return the size of the elements registered into the matrix designated by @var{interface}.
  993. @end defmac
  994. @node Accessing COO Data Interfaces
  995. @subsubsection COO Data Interfaces
  996. @defmac STARPU_COO_GET_COLUMNS ({void *}@var{interface})
  997. Return a pointer to the column array of the matrix designated by
  998. @var{interface}.
  999. @end defmac
  1000. @defmac STARPU_COO_GET_COLUMNS_DEV_HANDLE ({void *}@var{interface})
  1001. Return a device handle for the column array of the matrix designated by
  1002. @var{interface}, to be used on OpenCL. The offset documented below has to be
  1003. used in addition to this.
  1004. @end defmac
  1005. @defmac STARPU_COO_GET_ROWS (interface)
  1006. Return a pointer to the rows array of the matrix designated by @var{interface}.
  1007. @end defmac
  1008. @defmac STARPU_COO_GET_ROWS_DEV_HANDLE ({void *}@var{interface})
  1009. Return a device handle for the row array of the matrix designated by
  1010. @var{interface}, to be used on OpenCL. The offset documented below has to be
  1011. used in addition to this.
  1012. @end defmac
  1013. @defmac STARPU_COO_GET_VALUES (interface)
  1014. Return a pointer to the values array of the matrix designated by
  1015. @var{interface}.
  1016. @end defmac
  1017. @defmac STARPU_COO_GET_VALUES_DEV_HANDLE ({void *}@var{interface})
  1018. Return a device handle for the value array of the matrix designated by
  1019. @var{interface}, to be used on OpenCL. The offset documented below has to be
  1020. used in addition to this.
  1021. @end defmac
  1022. @defmac STARPU_COO_GET_OFFSET ({void *}@var{itnerface})
  1023. Return the offset in the arrays of the COO matrix designated by @var{interface}.
  1024. @end defmac
  1025. @defmac STARPU_COO_GET_NX (interface)
  1026. Return the number of elements on the x-axis of the matrix designated by
  1027. @var{interface}.
  1028. @end defmac
  1029. @defmac STARPU_COO_GET_NY (interface)
  1030. Return the number of elements on the y-axis of the matrix designated by
  1031. @var{interface}.
  1032. @end defmac
  1033. @defmac STARPU_COO_GET_NVALUES (interface)
  1034. Return the number of values registered in the matrix designated by
  1035. @var{interface}.
  1036. @end defmac
  1037. @defmac STARPU_COO_GET_ELEMSIZE (interface)
  1038. Return the size of the elements registered into the matrix designated by
  1039. @var{interface}.
  1040. @end defmac
  1041. @node Defining Interface
  1042. @subsection Defining Interface
  1043. Applications can provide their own interface. An example is provided in
  1044. @code{examples/interface}. A few helpers are provided.
  1045. @deftypefun uintptr_t starpu_malloc_on_node (unsigned @var{dst_node}, size_t @var{size})
  1046. Allocate @var{size} bytes on node @var{dst_node}. This returns 0 if allocation
  1047. failed, the allocation method should then return -ENOMEM as allocated size.
  1048. @end deftypefun
  1049. @deftypefun void starpu_free_on_node (unsigned @var{dst_node}, uintptr_t @var{addr}, size_t @var{size})
  1050. Free @var{addr} of @var{size} bytes on node @var{dst_node}.
  1051. @end deftypefun
  1052. @node Data Partition
  1053. @section Data Partition
  1054. @menu
  1055. * Basic API::
  1056. * Predefined filter functions::
  1057. @end menu
  1058. @node Basic API
  1059. @subsection Basic API
  1060. @deftp {Data Type} {struct starpu_data_filter}
  1061. The filter structure describes a data partitioning operation, to be given to the
  1062. @code{starpu_data_partition} function, see @ref{starpu_data_partition}
  1063. for an example. The different fields are:
  1064. @table @asis
  1065. @item @code{void (*filter_func)(void *father_interface, void* child_interface, struct starpu_data_filter *, unsigned id, unsigned nparts)}
  1066. This function fills the @code{child_interface} structure with interface
  1067. information for the @code{id}-th child of the parent @code{father_interface} (among @code{nparts}).
  1068. @item @code{unsigned nchildren}
  1069. This is the number of parts to partition the data into.
  1070. @item @code{unsigned (*get_nchildren)(struct starpu_data_filter *, starpu_data_handle_t initial_handle)}
  1071. This returns the number of children. This can be used instead of @code{nchildren} when the number of
  1072. children depends on the actual data (e.g. the number of blocks in a sparse
  1073. matrix).
  1074. @item @code{struct starpu_data_interface_ops *(*get_child_ops)(struct starpu_data_filter *, unsigned id)}
  1075. In case the resulting children use a different data interface, this function
  1076. returns which interface is used by child number @code{id}.
  1077. @item @code{unsigned filter_arg}
  1078. Allow to define an additional parameter for the filter function.
  1079. @item @code{void *filter_arg_ptr}
  1080. Allow to define an additional pointer parameter for the filter
  1081. function, such as the sizes of the different parts.
  1082. @end table
  1083. @end deftp
  1084. @deftypefun void starpu_data_partition (starpu_data_handle_t @var{initial_handle}, {struct starpu_data_filter *}@var{f})
  1085. @anchor{starpu_data_partition}
  1086. This requests partitioning one StarPU data @var{initial_handle} into several
  1087. subdata according to the filter @var{f}, as shown in the following example:
  1088. @cartouche
  1089. @smallexample
  1090. struct starpu_data_filter f = @{
  1091. .filter_func = starpu_matrix_filter_block,
  1092. .nchildren = nslicesx,
  1093. .get_nchildren = NULL,
  1094. .get_child_ops = NULL
  1095. @};
  1096. starpu_data_partition(A_handle, &f);
  1097. @end smallexample
  1098. @end cartouche
  1099. @end deftypefun
  1100. @deftypefun void starpu_data_unpartition (starpu_data_handle_t @var{root_data}, unsigned @var{gathering_node})
  1101. This unapplies one filter, thus unpartitioning the data. The pieces of data are
  1102. collected back into one big piece in the @var{gathering_node} (usually 0). Tasks
  1103. working on the partitioned data must be already finished when calling @code{starpu_data_unpartition}.
  1104. @cartouche
  1105. @smallexample
  1106. starpu_data_unpartition(A_handle, 0);
  1107. @end smallexample
  1108. @end cartouche
  1109. @end deftypefun
  1110. @deftypefun int starpu_data_get_nb_children (starpu_data_handle_t @var{handle})
  1111. This function returns the number of children.
  1112. @end deftypefun
  1113. @deftypefun starpu_data_handle_t starpu_data_get_child (starpu_data_handle_t @var{handle}, unsigned @var{i})
  1114. Return the @var{i}th child of the given @var{handle}, which must have been partitionned beforehand.
  1115. @end deftypefun
  1116. @deftypefun starpu_data_handle_t starpu_data_get_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, ... )
  1117. After partitioning a StarPU data by applying a filter,
  1118. @code{starpu_data_get_sub_data} can be used to get handles for each of
  1119. the data portions. @var{root_data} is the parent data that was
  1120. partitioned. @var{depth} is the number of filters to traverse (in
  1121. case several filters have been applied, to e.g. partition in row
  1122. blocks, and then in column blocks), and the subsequent
  1123. parameters are the indexes. The function returns a handle to the
  1124. subdata.
  1125. @cartouche
  1126. @smallexample
  1127. h = starpu_data_get_sub_data(A_handle, 1, taskx);
  1128. @end smallexample
  1129. @end cartouche
  1130. @end deftypefun
  1131. @deftypefun starpu_data_handle_t starpu_data_vget_sub_data (starpu_data_handle_t @var{root_data}, unsigned @var{depth}, va_list @var{pa})
  1132. This function is similar to @code{starpu_data_get_sub_data} but uses a
  1133. va_list for the parameter list.
  1134. @end deftypefun
  1135. @deftypefun void starpu_data_map_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, ...)
  1136. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  1137. recursively. @var{nfilters} pointers to variables of the type
  1138. starpu_data_filter should be given.
  1139. @end deftypefun
  1140. @deftypefun void starpu_data_vmap_filters (starpu_data_handle_t @var{root_data}, unsigned @var{nfilters}, va_list @var{pa})
  1141. Applies @var{nfilters} filters to the handle designated by @var{root_handle}
  1142. recursively. It uses a va_list of pointers to variables of the typer
  1143. starpu_data_filter.
  1144. @end deftypefun
  1145. @node Predefined filter functions
  1146. @subsection Predefined filter functions
  1147. @menu
  1148. * Partitioning Vector Data::
  1149. * Partitioning Matrix Data::
  1150. * Partitioning 3D Matrix Data::
  1151. * Partitioning BCSR Data::
  1152. @end menu
  1153. This section gives a partial list of the predefined partitioning functions.
  1154. Examples on how to use them are shown in @ref{Partitioning Data}. The complete
  1155. list can be found in @code{starpu_data_filters.h} .
  1156. @node Partitioning Vector Data
  1157. @subsubsection Partitioning Vector Data
  1158. @deftypefun void starpu_vector_filter_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1159. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1160. vector represented by @var{father_interface} once partitioned in
  1161. @var{nparts} chunks of equal size.
  1162. @end deftypefun
  1163. @deftypefun void starpu_vector_filter_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1164. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1165. vector represented by @var{father_interface} once partitioned in
  1166. @var{nparts} chunks of equal size with a shadow border @code{filter_arg_ptr}, thus getting a vector of size (n-2*shadow)/nparts+2*shadow
  1167. The @code{filter_arg_ptr} field must be the shadow size casted into @code{void*}.
  1168. IMPORTANT: This can only be used for read-only access, as no coherency is
  1169. enforced for the shadowed parts.
  1170. A usage example is available in examples/filters/shadow.c
  1171. @end deftypefun
  1172. @deftypefun void starpu_vector_filter_list (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1173. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1174. vector represented by @var{father_interface} once partitioned into
  1175. @var{nparts} chunks according to the @code{filter_arg_ptr} field of
  1176. @code{*@var{f}}.
  1177. The @code{filter_arg_ptr} field must point to an array of @var{nparts}
  1178. @code{uint32_t} elements, each of which specifies the number of elements
  1179. in each chunk of the partition.
  1180. @end deftypefun
  1181. @deftypefun void starpu_vector_filter_divide_in_2 (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1182. Return in @code{*@var{child_interface}} the @var{id}th element of the
  1183. vector represented by @var{father_interface} once partitioned in two
  1184. chunks of equal size, ignoring @var{nparts}. Thus, @var{id} must be
  1185. @code{0} or @code{1}.
  1186. @end deftypefun
  1187. @node Partitioning Matrix Data
  1188. @subsubsection Partitioning Matrix Data
  1189. @deftypefun void starpu_matrix_filter_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1190. This partitions a dense Matrix along the x dimension, thus getting (x/nparts,y)
  1191. matrices. If nparts does not divide x, the last submatrix contains the
  1192. remainder.
  1193. @end deftypefun
  1194. @deftypefun void starpu_matrix_filter_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1195. This partitions a dense Matrix along the x dimension, with a shadow border
  1196. @code{filter_arg_ptr}, thus getting ((x-2*shadow)/nparts+2*shadow,y)
  1197. matrices. If nparts does not divide x-2*shadow, the last submatrix contains the
  1198. remainder.
  1199. IMPORTANT: This can only be used for read-only access, as no coherency is
  1200. enforced for the shadowed parts.
  1201. A usage example is available in examples/filters/shadow2d.c
  1202. @end deftypefun
  1203. @deftypefun void starpu_matrix_filter_vertical_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1204. This partitions a dense Matrix along the y dimension, thus getting (x,y/nparts)
  1205. matrices. If nparts does not divide y, the last submatrix contains the
  1206. remainder.
  1207. @end deftypefun
  1208. @deftypefun void starpu_matrix_filter_vertical_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1209. This partitions a dense Matrix along the y dimension, with a shadow border
  1210. @code{filter_arg_ptr}, thus getting (x,(y-2*shadow)/nparts+2*shadow)
  1211. matrices. If nparts does not divide y-2*shadow, the last submatrix contains the
  1212. remainder.
  1213. IMPORTANT: This can only be used for read-only access, as no coherency is
  1214. enforced for the shadowed parts.
  1215. A usage example is available in examples/filters/shadow2d.c
  1216. @end deftypefun
  1217. @node Partitioning 3D Matrix Data
  1218. @subsubsection Partitioning 3D Matrix Data
  1219. A usage example is available in examples/filters/shadow3d.c
  1220. @deftypefun void starpu_block_filter_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1221. This partitions a 3D matrix along the X dimension, thus getting (x/nparts,y,z)
  1222. 3D matrices. If nparts does not divide x, the last submatrix contains the
  1223. remainder.
  1224. @end deftypefun
  1225. @deftypefun void starpu_block_filter_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1226. This partitions a 3D matrix along the X dimension, with a shadow border
  1227. @code{filter_arg_ptr}, thus getting ((x-2*shadow)/nparts+2*shadow,y,z) 3D
  1228. matrices. If nparts does not divide x, the last submatrix contains the
  1229. remainder.
  1230. IMPORTANT: This can only be used for read-only access, as no coherency is
  1231. enforced for the shadowed parts.
  1232. @end deftypefun
  1233. @deftypefun void starpu_block_filter_vertical_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1234. This partitions a 3D matrix along the Y dimension, thus getting (x,y/nparts,z)
  1235. 3D matrices. If nparts does not divide y, the last submatrix contains the
  1236. remainder.
  1237. @end deftypefun
  1238. @deftypefun void starpu_block_filter_vertical_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1239. This partitions a 3D matrix along the Y dimension, with a shadow border
  1240. @code{filter_arg_ptr}, thus getting (x,(y-2*shadow)/nparts+2*shadow,z) 3D
  1241. matrices. If nparts does not divide y, the last submatrix contains the
  1242. remainder.
  1243. IMPORTANT: This can only be used for read-only access, as no coherency is
  1244. enforced for the shadowed parts.
  1245. @end deftypefun
  1246. @deftypefun void starpu_block_filter_depth_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1247. This partitions a 3D matrix along the Z dimension, thus getting (x,y,z/nparts)
  1248. 3D matrices. If nparts does not divide z, the last submatrix contains the
  1249. remainder.
  1250. @end deftypefun
  1251. @deftypefun void starpu_block_filter_depth_block_shadow (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1252. This partitions a 3D matrix along the Z dimension, with a shadow border
  1253. @code{filter_arg_ptr}, thus getting (x,y,(z-2*shadow)/nparts+2*shadow)
  1254. 3D matrices. If nparts does not divide z, the last submatrix contains the
  1255. remainder.
  1256. IMPORTANT: This can only be used for read-only access, as no coherency is
  1257. enforced for the shadowed parts.
  1258. @end deftypefun
  1259. @node Partitioning BCSR Data
  1260. @subsubsection Partitioning BCSR Data
  1261. @deftypefun void starpu_bcsr_filter_canonical_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1262. This partitions a block-sparse matrix into dense matrices.
  1263. @end deftypefun
  1264. @deftypefun void starpu_csr_filter_vertical_block (void *@var{father_interface}, void *@var{child_interface}, {struct starpu_data_filter} *@var{f}, unsigned @var{id}, unsigned @var{nparts})
  1265. This partitions a block-sparse matrix into vertical block-sparse matrices.
  1266. @end deftypefun
  1267. @node Codelets and Tasks
  1268. @section Codelets and Tasks
  1269. This section describes the interface to manipulate codelets and tasks.
  1270. @deftp {Data Type} {enum starpu_codelet_type}
  1271. Describes the type of parallel task. The different values are:
  1272. @table @asis
  1273. @item @code{STARPU_SEQ} (default) for classical sequential tasks.
  1274. @item @code{STARPU_SPMD} for a parallel task whose threads are handled by
  1275. StarPU, the code has to use @code{starpu_combined_worker_get_size} and
  1276. @code{starpu_combined_worker_get_rank} to distribute the work
  1277. @item @code{STARPU_FORKJOIN} for a parallel task whose threads are started by
  1278. the codelet function, which has to use @code{starpu_combined_worker_get_size} to
  1279. determine how many threads should be started.
  1280. @end table
  1281. See @ref{Parallel Tasks} for details.
  1282. @end deftp
  1283. @defmac STARPU_CPU
  1284. This macro is used when setting the field @code{where} of a @code{struct
  1285. starpu_codelet} to specify the codelet may be executed on a CPU
  1286. processing unit.
  1287. @end defmac
  1288. @defmac STARPU_CUDA
  1289. This macro is used when setting the field @code{where} of a @code{struct
  1290. starpu_codelet} to specify the codelet may be executed on a CUDA
  1291. processing unit.
  1292. @end defmac
  1293. @defmac STARPU_OPENCL
  1294. This macro is used when setting the field @code{where} of a @code{struct
  1295. starpu_codelet} to specify the codelet may be executed on a OpenCL
  1296. processing unit.
  1297. @end defmac
  1298. @defmac STARPU_MULTIPLE_CPU_IMPLEMENTATIONS
  1299. Setting the field @code{cpu_func} of a @code{struct starpu_codelet}
  1300. with this macro indicates the codelet will have several
  1301. implementations. The use of this macro is deprecated. One should
  1302. always only define the field @code{cpu_funcs}.
  1303. @end defmac
  1304. @defmac STARPU_MULTIPLE_CUDA_IMPLEMENTATIONS
  1305. Setting the field @code{cuda_func} of a @code{struct starpu_codelet}
  1306. with this macro indicates the codelet will have several
  1307. implementations. The use of this macro is deprecated. One should
  1308. always only define the field @code{cuda_funcs}.
  1309. @end defmac
  1310. @defmac STARPU_MULTIPLE_OPENCL_IMPLEMENTATIONS
  1311. Setting the field @code{opencl_func} of a @code{struct starpu_codelet}
  1312. with this macro indicates the codelet will have several
  1313. implementations. The use of this macro is deprecated. One should
  1314. always only define the field @code{opencl_funcs}.
  1315. @end defmac
  1316. @deftp {Data Type} {struct starpu_codelet}
  1317. The codelet structure describes a kernel that is possibly implemented on various
  1318. targets. For compatibility, make sure to initialize the whole structure to zero,
  1319. either by using explicit memset, or by letting the compiler implicitly do it in
  1320. e.g. static storage case.
  1321. @table @asis
  1322. @item @code{uint32_t where} (optional)
  1323. Indicates which types of processing units are able to execute the
  1324. codelet. The different values
  1325. @code{STARPU_CPU}, @code{STARPU_CUDA},
  1326. @code{STARPU_OPENCL} can be combined to specify
  1327. on which types of processing units the codelet can be executed.
  1328. @code{STARPU_CPU|STARPU_CUDA} for instance indicates that the codelet is
  1329. implemented for both CPU cores and CUDA devices while @code{STARPU_OPENCL}
  1330. indicates that it is only available on OpenCL devices. If the field is
  1331. unset, its value will be automatically set based on the availability
  1332. of the @code{XXX_funcs} fields defined below.
  1333. @item @code{int (*can_execute)(unsigned workerid, struct starpu_task *task, unsigned nimpl)} (optional)
  1334. Defines a function which should return 1 if the worker designated by
  1335. @var{workerid} can execute the @var{nimpl}th implementation of the
  1336. given @var{task}, 0 otherwise.
  1337. @item @code{enum starpu_codelet_type type} (optional)
  1338. The default is @code{STARPU_SEQ}, i.e. usual sequential implementation. Other
  1339. values (@code{STARPU_SPMD} or @code{STARPU_FORKJOIN} declare that a parallel
  1340. implementation is also available. See @ref{Parallel Tasks} for details.
  1341. @item @code{int max_parallelism} (optional)
  1342. If a parallel implementation is available, this denotes the maximum combined
  1343. worker size that StarPU will use to execute parallel tasks for this codelet.
  1344. @item @code{starpu_cpu_func_t cpu_func} (optional)
  1345. This field has been made deprecated. One should use instead the
  1346. @code{cpu_funcs} field.
  1347. @item @code{starpu_cpu_func_t cpu_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1348. Is an array of function pointers to the CPU implementations of the codelet.
  1349. It must be terminated by a NULL value.
  1350. The functions prototype must be: @code{void cpu_func(void *buffers[], void *cl_arg)}. The first
  1351. argument being the array of data managed by the data management library, and
  1352. the second argument is a pointer to the argument passed from the @code{cl_arg}
  1353. field of the @code{starpu_task} structure.
  1354. If the @code{where} field is set, then the @code{cpu_funcs} field is
  1355. ignored if @code{STARPU_CPU} does not appear in the @code{where}
  1356. field, it must be non-null otherwise.
  1357. @item @code{starpu_cuda_func_t cuda_func} (optional)
  1358. This field has been made deprecated. One should use instead the
  1359. @code{cuda_funcs} field.
  1360. @item @code{starpu_cuda_func_t cuda_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1361. Is an array of function pointers to the CUDA implementations of the codelet.
  1362. It must be terminated by a NULL value.
  1363. @emph{The functions must be host-functions written in the CUDA runtime
  1364. API}. Their prototype must
  1365. be: @code{void cuda_func(void *buffers[], void *cl_arg);}.
  1366. If the @code{where} field is set, then the @code{cuda_funcs}
  1367. field is ignored if @code{STARPU_CUDA} does not appear in the @code{where}
  1368. field, it must be non-null otherwise.
  1369. @item @code{starpu_opencl_func_t opencl_func} (optional)
  1370. This field has been made deprecated. One should use instead the
  1371. @code{opencl_funcs} field.
  1372. @item @code{starpu_opencl_func_t opencl_funcs[STARPU_MAXIMPLEMENTATIONS]} (optional)
  1373. Is an array of function pointers to the OpenCL implementations of the codelet.
  1374. It must be terminated by a NULL value.
  1375. The functions prototype must be:
  1376. @code{void opencl_func(void *buffers[], void *cl_arg);}.
  1377. If the @code{where} field is set, then the @code{opencl_funcs} field
  1378. is ignored if @code{STARPU_OPENCL} does not appear in the @code{where}
  1379. field, it must be non-null otherwise.
  1380. @item @code{unsigned nbuffers}
  1381. Specifies the number of arguments taken by the codelet. These arguments are
  1382. managed by the DSM and are accessed from the @code{void *buffers[]}
  1383. array. The constant argument passed with the @code{cl_arg} field of the
  1384. @code{starpu_task} structure is not counted in this number. This value should
  1385. not be above @code{STARPU_NMAXBUFS}.
  1386. @item @code{enum starpu_access_mode modes[STARPU_NMAXBUFS]}
  1387. Is an array of @code{enum starpu_access_mode}. It describes the
  1388. required access modes to the data neeeded by the codelet (e.g.
  1389. @code{STARPU_RW}). The number of entries in this array must be
  1390. specified in the @code{nbuffers} field (defined above), and should not
  1391. exceed @code{STARPU_NMAXBUFS}.
  1392. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1393. option when configuring StarPU.
  1394. @item @code{struct starpu_perfmodel *model} (optional)
  1395. This is a pointer to the task duration performance model associated to this
  1396. codelet. This optional field is ignored when set to @code{NULL} or
  1397. when its @code{symbol} field is not set.
  1398. @item @code{struct starpu_perfmodel *power_model} (optional)
  1399. This is a pointer to the task power consumption performance model associated
  1400. to this codelet. This optional field is ignored when set to
  1401. @code{NULL} or when its @code{symbol} field is not set.
  1402. In the case of parallel codelets, this has to account for all processing units
  1403. involved in the parallel execution.
  1404. @item @code{unsigned long per_worker_stats[STARPU_NMAXWORKERS]} (optional)
  1405. Statistics collected at runtime: this is filled by StarPU and should not be
  1406. accessed directly, but for example by calling the
  1407. @code{starpu_display_codelet_stats} function (See
  1408. @ref{starpu_display_codelet_stats} for details).
  1409. @item @code{const char *name} (optional)
  1410. Define the name of the codelet. This can be useful for debugging purposes.
  1411. @end table
  1412. @end deftp
  1413. @deftypefun void starpu_codelet_init ({struct starpu_codelet} *@var{cl})
  1414. Initialize @var{cl} with default values. Codelets should preferably be
  1415. initialized statically as shown in @ref{Defining a Codelet}. However
  1416. such a initialisation is not always possible, e.g. when using C++.
  1417. @end deftypefun
  1418. @deftp {Data Type} {enum starpu_task_status}
  1419. State of a task, can be either of
  1420. @table @asis
  1421. @item @code{STARPU_TASK_INVALID} The task has just been initialized.
  1422. @item @code{STARPU_TASK_BLOCKED} The task has just been submitted, and its dependencies has not been checked yet.
  1423. @item @code{STARPU_TASK_READY} The task is ready for execution.
  1424. @item @code{STARPU_TASK_RUNNING} The task is running on some worker.
  1425. @item @code{STARPU_TASK_FINISHED} The task is finished executing.
  1426. @item @code{STARPU_TASK_BLOCKED_ON_TAG} The task is waiting for a tag.
  1427. @item @code{STARPU_TASK_BLOCKED_ON_TASK} The task is waiting for a task.
  1428. @item @code{STARPU_TASK_BLOCKED_ON_DATA} The task is waiting for some data.
  1429. @end table
  1430. @end deftp
  1431. @deftp {Data Type} {struct starpu_buffer_descr}
  1432. This type is used to describe a data handle along with an
  1433. access mode.
  1434. @table @asis
  1435. @item @code{starpu_data_handle_t handle} describes a data,
  1436. @item @code{enum starpu_access_mode mode} describes its access mode
  1437. @end table
  1438. @end deftp
  1439. @deftp {Data Type} {struct starpu_task}
  1440. The @code{starpu_task} structure describes a task that can be offloaded on the various
  1441. processing units managed by StarPU. It instantiates a codelet. It can either be
  1442. allocated dynamically with the @code{starpu_task_create} method, or declared
  1443. statically. In the latter case, the programmer has to zero the
  1444. @code{starpu_task} structure and to fill the different fields properly. The
  1445. indicated default values correspond to the configuration of a task allocated
  1446. with @code{starpu_task_create}.
  1447. @table @asis
  1448. @item @code{struct starpu_codelet *cl}
  1449. Is a pointer to the corresponding @code{struct starpu_codelet} data structure. This
  1450. describes where the kernel should be executed, and supplies the appropriate
  1451. implementations. When set to @code{NULL}, no code is executed during the tasks,
  1452. such empty tasks can be useful for synchronization purposes.
  1453. @item @code{struct starpu_buffer_descr buffers[STARPU_NMAXBUFS]}
  1454. This field has been made deprecated. One should use instead the
  1455. @code{handles} field to specify the handles to the data accessed by
  1456. the task. The access modes are now defined in the @code{mode} field of
  1457. the @code{struct starpu_codelet cl} field defined above.
  1458. @item @code{starpu_data_handle_t handles[STARPU_NMAXBUFS]}
  1459. Is an array of @code{starpu_data_handle_t}. It specifies the handles
  1460. to the different pieces of data accessed by the task. The number
  1461. of entries in this array must be specified in the @code{nbuffers} field of the
  1462. @code{struct starpu_codelet} structure, and should not exceed
  1463. @code{STARPU_NMAXBUFS}.
  1464. If unsufficient, this value can be set with the @code{--enable-maxbuffers}
  1465. option when configuring StarPU.
  1466. @item @code{void *interfaces[STARPU_NMAXBUFS]}
  1467. The actual data pointers to the memory node where execution will happen, managed
  1468. by the DSM.
  1469. @item @code{void *cl_arg} (optional; default: @code{NULL})
  1470. This pointer is passed to the codelet through the second argument
  1471. of the codelet implementation (e.g. @code{cpu_func} or @code{cuda_func}).
  1472. @item @code{size_t cl_arg_size} (optional)
  1473. For some specific drivers, the @code{cl_arg} pointer cannot not be directly
  1474. given to the driver function. A buffer of size @code{cl_arg_size}
  1475. needs to be allocated on the driver. This buffer is then filled with
  1476. the @code{cl_arg_size} bytes starting at address @code{cl_arg}. In
  1477. this case, the argument given to the codelet is therefore not the
  1478. @code{cl_arg} pointer, but the address of the buffer in local store
  1479. (LS) instead.
  1480. This field is ignored for CPU, CUDA and OpenCL codelets, where the
  1481. @code{cl_arg} pointer is given as such.
  1482. @item @code{void (*callback_func)(void *)} (optional) (default: @code{NULL})
  1483. This is a function pointer of prototype @code{void (*f)(void *)} which
  1484. specifies a possible callback. If this pointer is non-null, the callback
  1485. function is executed @emph{on the host} after the execution of the task. Tasks
  1486. which depend on it might already be executing. The callback is passed the
  1487. value contained in the @code{callback_arg} field. No callback is executed if the
  1488. field is set to @code{NULL}.
  1489. @item @code{void *callback_arg} (optional) (default: @code{NULL})
  1490. This is the pointer passed to the callback function. This field is ignored if
  1491. the @code{callback_func} is set to @code{NULL}.
  1492. @item @code{unsigned use_tag} (optional) (default: @code{0})
  1493. If set, this flag indicates that the task should be associated with the tag
  1494. contained in the @code{tag_id} field. Tag allow the application to synchronize
  1495. with the task and to express task dependencies easily.
  1496. @item @code{starpu_tag_t tag_id}
  1497. This field contains the tag associated to the task if the @code{use_tag} field
  1498. was set, it is ignored otherwise.
  1499. @item @code{unsigned sequential_consistency}
  1500. If this flag is set (which is the default), sequential consistency is enforced
  1501. for the data parameters of this task for which sequential consistency is
  1502. enabled. Clearing this flag permits to disable sequential consistency for this
  1503. task, even if data have it enabled.
  1504. @item @code{unsigned synchronous}
  1505. If this flag is set, the @code{starpu_task_submit} function is blocking and
  1506. returns only when the task has been executed (or if no worker is able to
  1507. process the task). Otherwise, @code{starpu_task_submit} returns immediately.
  1508. @item @code{int priority} (optional) (default: @code{STARPU_DEFAULT_PRIO})
  1509. This field indicates a level of priority for the task. This is an integer value
  1510. that must be set between the return values of the
  1511. @code{starpu_task_get_min_priority} function for the least important tasks,
  1512. and that of the @code{starpu_task_get_max_priority} for the most important
  1513. tasks (included). The @code{STARPU_MIN_PRIO} and @code{STARPU_MAX_PRIO} macros
  1514. are provided for convenience and respectively returns value of
  1515. @code{starpu_task_get_min_priority} and @code{starpu_task_get_max_priority}.
  1516. Default priority is @code{STARPU_DEFAULT_PRIO}, which is always defined as 0 in
  1517. order to allow static task initialization. Scheduling strategies that take
  1518. priorities into account can use this parameter to take better scheduling
  1519. decisions, but the scheduling policy may also ignore it.
  1520. @item @code{unsigned execute_on_a_specific_worker} (default: @code{0})
  1521. If this flag is set, StarPU will bypass the scheduler and directly affect this
  1522. task to the worker specified by the @code{workerid} field.
  1523. @item @code{unsigned workerid} (optional)
  1524. If the @code{execute_on_a_specific_worker} field is set, this field indicates
  1525. which is the identifier of the worker that should process this task (as
  1526. returned by @code{starpu_worker_get_id}). This field is ignored if
  1527. @code{execute_on_a_specific_worker} field is set to 0.
  1528. @item @code{starpu_task_bundle_t bundle} (optional)
  1529. The bundle that includes this task. If no bundle is used, this should be NULL.
  1530. @item @code{int detach} (optional) (default: @code{1})
  1531. If this flag is set, it is not possible to synchronize with the task
  1532. by the means of @code{starpu_task_wait} later on. Internal data structures
  1533. are only guaranteed to be freed once @code{starpu_task_wait} is called if the
  1534. flag is not set.
  1535. @item @code{int destroy} (optional) (default: @code{0} for starpu_task_init, @code{1} for starpu_task_create)
  1536. If this flag is set, the task structure will automatically be freed, either
  1537. after the execution of the callback if the task is detached, or during
  1538. @code{starpu_task_wait} otherwise. If this flag is not set, dynamically
  1539. allocated data structures will not be freed until @code{starpu_task_destroy} is
  1540. called explicitly. Setting this flag for a statically allocated task structure
  1541. will result in undefined behaviour. The flag is set to 1 when the task is
  1542. created by calling @code{starpu_task_create()}. Note that
  1543. @code{starpu_task_wait_for_all} will not free any task.
  1544. @item @code{int regenerate} (optional)
  1545. If this flag is set, the task will be re-submitted to StarPU once it has been
  1546. executed. This flag must not be set if the destroy flag is set too.
  1547. @item @code{enum starpu_task_status status} (optional)
  1548. Current state of the task.
  1549. @item @code{struct starpu_task_profiling_info *profiling_info} (optional)
  1550. Profiling information for the task.
  1551. @item @code{double predicted} (output field)
  1552. Predicted duration of the task. This field is only set if the scheduling
  1553. strategy used performance models.
  1554. @item @code{double predicted_transfer} (optional)
  1555. Predicted data transfer duration for the task in microseconds. This field is
  1556. only valid if the scheduling strategy uses performance models.
  1557. @item @code{struct starpu_task *prev}
  1558. A pointer to the previous task. This should only be used by StarPU.
  1559. @item @code{struct starpu_task *next}
  1560. A pointer to the next task. This should only be used by StarPU.
  1561. @item @code{unsigned int mf_skip}
  1562. This is only used for tasks that use multiformat handle. This should only be
  1563. used by StarPU.
  1564. @item @code{double flops}
  1565. This can be set to the number of floating points operations that the task
  1566. will have to achieve. This is useful for easily getting GFlops curves from
  1567. @code{starpu_perfmodel_plot}, and for the hypervisor load balancing.
  1568. @item @code{void *starpu_private}
  1569. This is private to StarPU, do not modify. If the task is allocated by hand
  1570. (without starpu_task_create), this field should be set to NULL.
  1571. @item @code{int magic}
  1572. This field is set when initializing a task. It prevents a task from being
  1573. submitted if it has not been properly initialized.
  1574. @end table
  1575. @end deftp
  1576. @deftypefun void starpu_task_init ({struct starpu_task} *@var{task})
  1577. Initialize @var{task} with default values. This function is implicitly
  1578. called by @code{starpu_task_create}. By default, tasks initialized with
  1579. @code{starpu_task_init} must be deinitialized explicitly with
  1580. @code{starpu_task_clean}. Tasks can also be initialized statically,
  1581. using @code{STARPU_TASK_INITIALIZER} defined below.
  1582. @end deftypefun
  1583. @defmac STARPU_TASK_INITIALIZER
  1584. It is possible to initialize statically allocated tasks with this
  1585. value. This is equivalent to initializing a starpu_task structure with
  1586. the @code{starpu_task_init} function defined above.
  1587. @end defmac
  1588. @deftypefun {struct starpu_task *} starpu_task_create (void)
  1589. Allocate a task structure and initialize it with default values. Tasks
  1590. allocated dynamically with @code{starpu_task_create} are automatically freed when the
  1591. task is terminated. This means that the task pointer can not be used any more
  1592. once the task is submitted, since it can be executed at any time (unless
  1593. dependencies make it wait) and thus freed at any time.
  1594. If the destroy flag is explicitly unset, the resources used
  1595. by the task have to be freed by calling
  1596. @code{starpu_task_destroy}.
  1597. @end deftypefun
  1598. @deftypefun void starpu_task_clean ({struct starpu_task} *@var{task})
  1599. Release all the structures automatically allocated to execute @var{task}, but
  1600. not the task structure itself and values set by the user remain unchanged.
  1601. It is thus useful for statically allocated tasks for instance.
  1602. It is also useful when the user wants to execute the same operation several
  1603. times with as least overhead as possible.
  1604. It is called automatically by @code{starpu_task_destroy}.
  1605. It has to be called only after explicitly waiting for the task or after
  1606. @code{starpu_shutdown} (waiting for the callback is not enough, since starpu
  1607. still manipulates the task after calling the callback).
  1608. @end deftypefun
  1609. @deftypefun void starpu_task_destroy ({struct starpu_task} *@var{task})
  1610. Free the resource allocated during @code{starpu_task_create} and
  1611. associated with @var{task}. This function is already called automatically
  1612. after the execution of a task when the @code{destroy} flag of the
  1613. @code{starpu_task} structure is set, which is the default for tasks created by
  1614. @code{starpu_task_create}. Calling this function on a statically allocated task
  1615. results in an undefined behaviour.
  1616. @end deftypefun
  1617. @deftypefun int starpu_task_wait ({struct starpu_task} *@var{task})
  1618. This function blocks until @var{task} has been executed. It is not possible to
  1619. synchronize with a task more than once. It is not possible to wait for
  1620. synchronous or detached tasks.
  1621. Upon successful completion, this function returns 0. Otherwise, @code{-EINVAL}
  1622. indicates that the specified task was either synchronous or detached.
  1623. @end deftypefun
  1624. @deftypefun int starpu_task_submit ({struct starpu_task} *@var{task})
  1625. This function submits @var{task} to StarPU. Calling this function does
  1626. not mean that the task will be executed immediately as there can be data or task
  1627. (tag) dependencies that are not fulfilled yet: StarPU will take care of
  1628. scheduling this task with respect to such dependencies.
  1629. This function returns immediately if the @code{synchronous} field of the
  1630. @code{starpu_task} structure was set to 0, and block until the termination of
  1631. the task otherwise. It is also possible to synchronize the application with
  1632. asynchronous tasks by the means of tags, using the @code{starpu_tag_wait}
  1633. function for instance.
  1634. In case of success, this function returns 0, a return value of @code{-ENODEV}
  1635. means that there is no worker able to process this task (e.g. there is no GPU
  1636. available and this task is only implemented for CUDA devices).
  1637. starpu_task_submit() can be called from anywhere, including codelet
  1638. functions and callbacks, provided that the @code{synchronous} field of the
  1639. @code{starpu_task} structure is left to 0.
  1640. @end deftypefun
  1641. @deftypefun int starpu_task_wait_for_all (void)
  1642. This function blocks until all the tasks that were submitted are terminated. It
  1643. does not destroy these tasks.
  1644. @end deftypefun
  1645. @deftypefun int starpu_task_nready (void)
  1646. @end deftypefun
  1647. @deftypefun int starpu_task_nsubmitted (void)
  1648. Return the number of submitted tasks which have not completed yet.
  1649. @end deftypefun
  1650. @deftypefun int starpu_task_nready (void)
  1651. Return the number of submitted tasks which are ready for execution are already
  1652. executing. It thus does not include tasks waiting for dependencies.
  1653. @end deftypefun
  1654. @deftypefun {struct starpu_task *} starpu_task_get_current (void)
  1655. This function returns the task currently executed by the worker, or
  1656. NULL if it is called either from a thread that is not a task or simply
  1657. because there is no task being executed at the moment.
  1658. @end deftypefun
  1659. @deftypefun void starpu_display_codelet_stats ({struct starpu_codelet} *@var{cl})
  1660. @anchor{starpu_display_codelet_stats}
  1661. Output on @code{stderr} some statistics on the codelet @var{cl}.
  1662. @end deftypefun
  1663. @deftypefun int starpu_task_wait_for_no_ready (void)
  1664. This function waits until there is no more ready task.
  1665. @end deftypefun
  1666. @c Callbacks: what can we put in callbacks ?
  1667. @node Insert Task
  1668. @section Insert Task
  1669. @deftypefun int starpu_insert_task (struct starpu_codelet *@var{cl}, ...)
  1670. Create and submit a task corresponding to @var{cl} with the following
  1671. arguments. The argument list must be zero-terminated.
  1672. The arguments following the codelets can be of the following types:
  1673. @itemize
  1674. @item
  1675. @code{STARPU_R}, @code{STARPU_W}, @code{STARPU_RW}, @code{STARPU_SCRATCH}, @code{STARPU_REDUX} an access mode followed by a data handle;
  1676. @item
  1677. @code{STARPU_DATA_ARRAY} followed by an array of data handles and its number of elements;
  1678. @item
  1679. the specific values @code{STARPU_VALUE}, @code{STARPU_CALLBACK},
  1680. @code{STARPU_CALLBACK_ARG}, @code{STARPU_CALLBACK_WITH_ARG},
  1681. @code{STARPU_PRIORITY}, @code{STARPU_TAG}, @code{STARPU_FLOPS}, followed by the appropriated objects
  1682. as defined below.
  1683. @end itemize
  1684. When using @code{STARPU_DATA_ARRAY}, the access mode of the data
  1685. handles is not defined.
  1686. Parameters to be passed to the codelet implementation are defined
  1687. through the type @code{STARPU_VALUE}. The function
  1688. @code{starpu_codelet_unpack_args} must be called within the codelet
  1689. implementation to retrieve them.
  1690. @end deftypefun
  1691. @defmac STARPU_VALUE
  1692. this macro is used when calling @code{starpu_insert_task}, and must be
  1693. followed by a pointer to a constant value and the size of the constant
  1694. @end defmac
  1695. @defmac STARPU_CALLBACK
  1696. this macro is used when calling @code{starpu_insert_task}, and must be
  1697. followed by a pointer to a callback function
  1698. @end defmac
  1699. @defmac STARPU_CALLBACK_ARG
  1700. this macro is used when calling @code{starpu_insert_task}, and must be
  1701. followed by a pointer to be given as an argument to the callback
  1702. function
  1703. @end defmac
  1704. @defmac STARPU_CALLBACK_WITH_ARG
  1705. this macro is used when calling @code{starpu_insert_task}, and must be
  1706. followed by two pointers: one to a callback function, and the other to
  1707. be given as an argument to the callback function; this is equivalent
  1708. to using both @code{STARPU_CALLBACK} and
  1709. @code{STARPU_CALLBACK_WITH_ARG}
  1710. @end defmac
  1711. @defmac STARPU_PRIORITY
  1712. this macro is used when calling @code{starpu_insert_task}, and must be
  1713. followed by a integer defining a priority level
  1714. @end defmac
  1715. @defmac STARPU_TAG
  1716. this macro is used when calling @code{starpu_insert_task}, and must be
  1717. followed by a tag.
  1718. @end defmac
  1719. @defmac STARPU_FLOPS
  1720. this macro is used when calling @code{starpu_insert_task}, and must be followed
  1721. by an amount of floating point operations, as a double. The user may have to
  1722. explicitly cast into double, otherwise parameter passing will not work.
  1723. @end defmac
  1724. @deftypefun void starpu_codelet_pack_args ({char **}@var{arg_buffer}, {size_t *}@var{arg_buffer_size}, ...)
  1725. Pack arguments of type @code{STARPU_VALUE} into a buffer which can be
  1726. given to a codelet and later unpacked with the function
  1727. @code{starpu_codelet_unpack_args} defined below.
  1728. @end deftypefun
  1729. @deftypefun void starpu_codelet_unpack_args ({void *}@var{cl_arg}, ...)
  1730. Retrieve the arguments of type @code{STARPU_VALUE} associated to a
  1731. task automatically created using the function
  1732. @code{starpu_insert_task} defined above.
  1733. @end deftypefun
  1734. @node Explicit Dependencies
  1735. @section Explicit Dependencies
  1736. @deftypefun void starpu_task_declare_deps_array ({struct starpu_task} *@var{task}, unsigned @var{ndeps}, {struct starpu_task} *@var{task_array}[])
  1737. Declare task dependencies between a @var{task} and an array of tasks of length
  1738. @var{ndeps}. This function must be called prior to the submission of the task,
  1739. but it may called after the submission or the execution of the tasks in the
  1740. array, provided the tasks are still valid (ie. they were not automatically
  1741. destroyed). Calling this function on a task that was already submitted or with
  1742. an entry of @var{task_array} that is not a valid task anymore results in an
  1743. undefined behaviour. If @var{ndeps} is null, no dependency is added. It is
  1744. possible to call @code{starpu_task_declare_deps_array} multiple times on the
  1745. same task, in this case, the dependencies are added. It is possible to have
  1746. redundancy in the task dependencies.
  1747. @end deftypefun
  1748. @deftp {Data Type} {starpu_tag_t}
  1749. This type defines a task logical identifer. It is possible to associate a task with a unique ``tag'' chosen by the application, and to express
  1750. dependencies between tasks by the means of those tags. To do so, fill the
  1751. @code{tag_id} field of the @code{starpu_task} structure with a tag number (can
  1752. be arbitrary) and set the @code{use_tag} field to 1.
  1753. If @code{starpu_tag_declare_deps} is called with this tag number, the task will
  1754. not be started until the tasks which holds the declared dependency tags are
  1755. completed.
  1756. @end deftp
  1757. @deftypefun void starpu_tag_declare_deps (starpu_tag_t @var{id}, unsigned @var{ndeps}, ...)
  1758. Specify the dependencies of the task identified by tag @var{id}. The first
  1759. argument specifies the tag which is configured, the second argument gives the
  1760. number of tag(s) on which @var{id} depends. The following arguments are the
  1761. tags which have to be terminated to unlock the task.
  1762. This function must be called before the associated task is submitted to StarPU
  1763. with @code{starpu_task_submit}.
  1764. Because of the variable arity of @code{starpu_tag_declare_deps}, note that the
  1765. last arguments @emph{must} be of type @code{starpu_tag_t}: constant values
  1766. typically need to be explicitly casted. Using the
  1767. @code{starpu_tag_declare_deps_array} function avoids this hazard.
  1768. @cartouche
  1769. @smallexample
  1770. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1771. starpu_tag_declare_deps((starpu_tag_t)0x1,
  1772. 2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
  1773. @end smallexample
  1774. @end cartouche
  1775. @end deftypefun
  1776. @deftypefun void starpu_tag_declare_deps_array (starpu_tag_t @var{id}, unsigned @var{ndeps}, {starpu_tag_t *}@var{array})
  1777. This function is similar to @code{starpu_tag_declare_deps}, except
  1778. that its does not take a variable number of arguments but an array of
  1779. tags of size @var{ndeps}.
  1780. @cartouche
  1781. @smallexample
  1782. /* Tag 0x1 depends on tags 0x32 and 0x52 */
  1783. starpu_tag_t tag_array[2] = @{0x32, 0x52@};
  1784. starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
  1785. @end smallexample
  1786. @end cartouche
  1787. @end deftypefun
  1788. @deftypefun int starpu_tag_wait (starpu_tag_t @var{id})
  1789. This function blocks until the task associated to tag @var{id} has been
  1790. executed. This is a blocking call which must therefore not be called within
  1791. tasks or callbacks, but only from the application directly. It is possible to
  1792. synchronize with the same tag multiple times, as long as the
  1793. @code{starpu_tag_remove} function is not called. Note that it is still
  1794. possible to synchronize with a tag associated to a task which @code{starpu_task}
  1795. data structure was freed (e.g. if the @code{destroy} flag of the
  1796. @code{starpu_task} was enabled).
  1797. @end deftypefun
  1798. @deftypefun int starpu_tag_wait_array (unsigned @var{ntags}, starpu_tag_t *@var{id})
  1799. This function is similar to @code{starpu_tag_wait} except that it blocks until
  1800. @emph{all} the @var{ntags} tags contained in the @var{id} array are
  1801. terminated.
  1802. @end deftypefun
  1803. @deftypefun void starpu_tag_restart (starpu_tag_t @var{id})
  1804. This function can be used to clear the "already notified" status
  1805. of a tag which is not associated with a task. Before that, calling
  1806. @code{starpu_tag_notify_from_apps} again will not notify the successors. After
  1807. that, the next call to @code{starpu_tag_notify_from_apps} will notify the
  1808. successors.
  1809. @end deftypefun
  1810. @deftypefun void starpu_tag_remove (starpu_tag_t @var{id})
  1811. This function releases the resources associated to tag @var{id}. It can be
  1812. called once the corresponding task has been executed and when there is
  1813. no other tag that depend on this tag anymore.
  1814. @end deftypefun
  1815. @deftypefun void starpu_tag_notify_from_apps (starpu_tag_t @var{id})
  1816. This function explicitly unlocks tag @var{id}. It may be useful in the
  1817. case of applications which execute part of their computation outside StarPU
  1818. tasks (e.g. third-party libraries). It is also provided as a
  1819. convenient tool for the programmer, for instance to entirely construct the task
  1820. DAG before actually giving StarPU the opportunity to execute the tasks. When
  1821. called several times on the same tag, notification will be done only on first
  1822. call, thus implementing "OR" dependencies, until the tag is restarted using
  1823. @code{starpu_tag_restart}.
  1824. @end deftypefun
  1825. @node Implicit Data Dependencies
  1826. @section Implicit Data Dependencies
  1827. In this section, we describe how StarPU makes it possible to insert implicit
  1828. task dependencies in order to enforce sequential data consistency. When this
  1829. data consistency is enabled on a specific data handle, any data access will
  1830. appear as sequentially consistent from the application. For instance, if the
  1831. application submits two tasks that access the same piece of data in read-only
  1832. mode, and then a third task that access it in write mode, dependencies will be
  1833. added between the two first tasks and the third one. Implicit data dependencies
  1834. are also inserted in the case of data accesses from the application.
  1835. @deftypefun void starpu_data_set_default_sequential_consistency_flag (unsigned @var{flag})
  1836. Set the default sequential consistency flag. If a non-zero value is passed, a
  1837. sequential data consistency will be enforced for all handles registered after
  1838. this function call, otherwise it is disabled. By default, StarPU enables
  1839. sequential data consistency. It is also possible to select the data consistency
  1840. mode of a specific data handle with the
  1841. @code{starpu_data_set_sequential_consistency_flag} function.
  1842. @end deftypefun
  1843. @deftypefun unsigned starpu_data_get_default_sequential_consistency_flag (void)
  1844. Return the default sequential consistency flag
  1845. @end deftypefun
  1846. @deftypefun void starpu_data_set_sequential_consistency_flag (starpu_data_handle_t @var{handle}, unsigned @var{flag})
  1847. Sets the data consistency mode associated to a data handle. The consistency
  1848. mode set using this function has the priority over the default mode which can
  1849. be set with @code{starpu_data_set_default_sequential_consistency_flag}.
  1850. @end deftypefun
  1851. @node Performance Model API
  1852. @section Performance Model API
  1853. @deftp {Data Type} {enum starpu_perf_archtype}
  1854. Enumerates the various types of architectures.
  1855. CPU types range within STARPU_CPU_DEFAULT (1 CPU), STARPU_CPU_DEFAULT+1 (2 CPUs), ... STARPU_CPU_DEFAULT + STARPU_MAXCPUS - 1 (STARPU_MAXCPUS CPUs).
  1856. CUDA types range within STARPU_CUDA_DEFAULT (GPU number 0), STARPU_CUDA_DEFAULT + 1 (GPU number 1), ..., STARPU_CUDA_DEFAULT + STARPU_MAXCUDADEVS - 1 (GPU number STARPU_MAXCUDADEVS - 1).
  1857. OpenCL types range within STARPU_OPENCL_DEFAULT (GPU number 0), STARPU_OPENCL_DEFAULT + 1 (GPU number 1), ..., STARPU_OPENCL_DEFAULT + STARPU_MAXOPENCLDEVS - 1 (GPU number STARPU_MAXOPENCLDEVS - 1).
  1858. @table @asis
  1859. @item @code{STARPU_CPU_DEFAULT}
  1860. @item @code{STARPU_CUDA_DEFAULT}
  1861. @item @code{STARPU_OPENCL_DEFAULT}
  1862. @end table
  1863. @end deftp
  1864. @deftp {Data Type} {enum starpu_perfmodel_type}
  1865. The possible values are:
  1866. @table @asis
  1867. @item @code{STARPU_PER_ARCH} for application-provided per-arch cost model functions.
  1868. @item @code{STARPU_COMMON} for application-provided common cost model function, with per-arch factor.
  1869. @item @code{STARPU_HISTORY_BASED} for automatic history-based cost model.
  1870. @item @code{STARPU_REGRESSION_BASED} for automatic linear regression-based cost model (alpha * size ^ beta).
  1871. @item @code{STARPU_NL_REGRESSION_BASED} for automatic non-linear regression-based cost mode (a * size ^ b + c).
  1872. @end table
  1873. @end deftp
  1874. @deftp {Data Type} {struct starpu_perfmodel}
  1875. @anchor{struct starpu_perfmodel}
  1876. contains all information about a performance model. At least the
  1877. @code{type} and @code{symbol} fields have to be filled when defining a
  1878. performance model for a codelet. For compatibility, make sure to initialize the
  1879. whole structure to zero, either by using explicit memset, or by letting the
  1880. compiler implicitly do it in e.g. static storage case.
  1881. If not provided, other fields have to be zero.
  1882. @table @asis
  1883. @item @code{type}
  1884. is the type of performance model @code{enum starpu_perfmodel_type}:
  1885. @code{STARPU_HISTORY_BASED},
  1886. @code{STARPU_REGRESSION_BASED}, @code{STARPU_NL_REGRESSION_BASED}: No
  1887. other fields needs to be provided, this is purely history-based. @code{STARPU_PER_ARCH}:
  1888. @code{per_arch} has to be filled with functions which return the cost in
  1889. micro-seconds. @code{STARPU_COMMON}: @code{cost_function} has to be filled with
  1890. a function that returns the cost in micro-seconds on a CPU, timing on other
  1891. archs will be determined by multiplying by an arch-specific factor.
  1892. @item @code{const char *symbol}
  1893. is the symbol name for the performance model, which will be used as
  1894. file name to store the model. It must be set otherwise the model will
  1895. be ignored.
  1896. @item @code{double (*cost_model)(struct starpu_buffer_descr *)}
  1897. This field is deprecated. Use instead the @code{cost_function} field.
  1898. @item @code{double (*cost_function)(struct starpu_task *, unsigned nimpl)}
  1899. Used by @code{STARPU_COMMON}: takes a task and
  1900. implementation number, and must return a task duration estimation in micro-seconds.
  1901. @item @code{size_t (*size_base)(struct starpu_task *, unsigned nimpl)}
  1902. Used by @code{STARPU_HISTORY_BASED} and
  1903. @code{STARPU_*REGRESSION_BASED}. If not NULL, takes a task and
  1904. implementation number, and returns the size to be used as index for
  1905. history and regression.
  1906. @item @code{struct starpu_perfmodel_per_arch per_arch[STARPU_NARCH_VARIATIONS][STARPU_MAXIMPLEMENTATIONS]}
  1907. Used by @code{STARPU_PER_ARCH}: array of @code{struct
  1908. starpu_per_arch_perfmodel} structures.
  1909. @item @code{unsigned is_loaded}
  1910. Whether the performance model is already loaded from the disk.
  1911. @item @code{unsigned benchmarking}
  1912. Whether the performance model is still being calibrated.
  1913. @item @code{pthread_rwlock_t model_rwlock}
  1914. Lock to protect concurrency between loading from disk (W), updating the values
  1915. (W), and making a performance estimation (R).
  1916. @end table
  1917. @end deftp
  1918. @deftp {Data Type} {struct starpu_perfmodel_regression_model}
  1919. @table @asis
  1920. @item @code{double sumlny} sum of ln(measured)
  1921. @item @code{double sumlnx} sum of ln(size)
  1922. @item @code{double sumlnx2} sum of ln(size)^2
  1923. @item @code{unsigned long minx} minimum size
  1924. @item @code{unsigned long maxx} maximum size
  1925. @item @code{double sumlnxlny} sum of ln(size)*ln(measured)
  1926. @item @code{double alpha} estimated = alpha * size ^ beta
  1927. @item @code{double beta}
  1928. @item @code{unsigned valid} whether the linear regression model is valid (i.e. enough measures)
  1929. @item @code{double a, b, c} estimaed = a size ^b + c
  1930. @item @code{unsigned nl_valid} whether the non-linear regression model is valid (i.e. enough measures)
  1931. @item @code{unsigned nsample} number of sample values for non-linear regression
  1932. @end table
  1933. @end deftp
  1934. @deftp {Data Type} {struct starpu_perfmodel_per_arch}
  1935. contains information about the performance model of a given arch.
  1936. @table @asis
  1937. @item @code{double (*cost_model)(struct starpu_buffer_descr *t)}
  1938. This field is deprecated. Use instead the @code{cost_function} field.
  1939. @item @code{double (*cost_function)(struct starpu_task *task, enum starpu_perf_archtype arch, unsigned nimpl)}
  1940. Used by @code{STARPU_PER_ARCH}, must point to functions which take a task, the
  1941. target arch and implementation number (as mere conveniency, since the array
  1942. is already indexed by these), and must return a task duration estimation in
  1943. micro-seconds.
  1944. @item @code{size_t (*size_base)(struct starpu_task *, enum
  1945. starpu_perf_archtype arch, unsigned nimpl)}
  1946. Same as in @ref{struct starpu_perfmodel}, but per-arch, in
  1947. case it depends on the architecture-specific implementation.
  1948. @item @code{struct starpu_htbl32_node *history}
  1949. The history of performance measurements.
  1950. @item @code{struct starpu_perfmodel_history_list *list}
  1951. Used by @code{STARPU_HISTORY_BASED} and @code{STARPU_NL_REGRESSION_BASED},
  1952. records all execution history measures.
  1953. @item @code{struct starpu_perfmodel_regression_model regression}
  1954. Used by @code{STARPU_HISTORY_REGRESION_BASED} and
  1955. @code{STARPU_NL_REGRESSION_BASED}, contains the estimated factors of the
  1956. regression.
  1957. @end table
  1958. @end deftp
  1959. @deftypefun int starpu_perfmodel_load_symbol ({const char} *@var{symbol}, {struct starpu_perfmodel} *@var{model})
  1960. loads a given performance model. The @var{model} structure has to be completely zero, and will be filled with the information saved in @code{$STARPU_HOME/.starpu}.
  1961. @end deftypefun
  1962. @deftypefun int starpu_perfmodel_unload_model ({struct starpu_perfmodel} *@var{model})
  1963. unloads the given model which has been previously loaded through the function @code{starpu_perfmodel_load_symbol}
  1964. @end deftypefun
  1965. @deftypefun void starpu_perfmodel_debugfilepath ({struct starpu_perfmodel} *@var{model}, {enum starpu_perf_archtype} @var{arch}, char *@var{path}, size_t @var{maxlen}, unsigned nimpl)
  1966. returns the path to the debugging information for the performance model.
  1967. @end deftypefun
  1968. @deftypefun void starpu_perfmodel_get_arch_name ({enum starpu_perf_archtype} @var{arch}, char *@var{archname}, size_t @var{maxlen}, unsigned nimpl)
  1969. returns the architecture name for @var{arch}.
  1970. @end deftypefun
  1971. @deftypefun {enum starpu_perf_archtype} starpu_worker_get_perf_archtype (int @var{workerid})
  1972. returns the architecture type of a given worker.
  1973. @end deftypefun
  1974. @deftypefun int starpu_perfmodel_list ({FILE *}@var{output})
  1975. prints a list of all performance models on @var{output}.
  1976. @end deftypefun
  1977. @deftypefun void starpu_perfmodel_print ({struct starpu_perfmodel *}@var{model}, {enum starpu_perf_archtype} @var{arch}, unsigned @var{nimpl}, {char *}@var{parameter}, {uint32_t *}footprint, {FILE *}@var{output})
  1978. todo
  1979. @end deftypefun
  1980. @deftypefun int starpu_perfmodel_print_all ({struct starpu_perfmodel *}@var{model}, {char *}@var{arch}, @var{char *}parameter, {uint32_t *}@var{footprint}, {FILE *}@var{output})
  1981. todo
  1982. @end deftypefun
  1983. @deftypefun void starpu_bus_print_bandwidth ({FILE *}@var{f})
  1984. prints a matrix of bus bandwidths on @var{f}.
  1985. @end deftypefun
  1986. @deftypefun void starpu_bus_print_affinity ({FILE *}@var{f})
  1987. prints the affinity devices on @var{f}.
  1988. @end deftypefun
  1989. @deftypefun void starpu_topology_print ({FILE *}@var{f})
  1990. prints a description of the topology on @var{f}.
  1991. @end deftypefun
  1992. @deftypefun void starpu_perfmodel_update_history ({struct starpu_perfmodel *}@var{model}, {struct starpu_task *}@var{task}, {enum starpu_perf_archtype} @var{arch}, unsigned @var{cpuid}, unsigned @var{nimpl}, double @var{measured});
  1993. This feeds the performance model @var{model} with an explicit measurement
  1994. @var{measured}, in addition to measurements done by StarPU itself. This can be
  1995. useful when the application already has an existing set of measurements done
  1996. in good conditions, that StarPU could benefit from instead of doing on-line
  1997. measurements. And example of use can be see in @ref{Performance model example}.
  1998. @end deftypefun
  1999. @node Profiling API
  2000. @section Profiling API
  2001. @deftypefun int starpu_profiling_status_set (int @var{status})
  2002. Thie function sets the profiling status. Profiling is activated by passing
  2003. @code{STARPU_PROFILING_ENABLE} in @var{status}. Passing
  2004. @code{STARPU_PROFILING_DISABLE} disables profiling. Calling this function
  2005. resets all profiling measurements. When profiling is enabled, the
  2006. @code{profiling_info} field of the @code{struct starpu_task} structure points
  2007. to a valid @code{struct starpu_task_profiling_info} structure containing
  2008. information about the execution of the task.
  2009. Negative return values indicate an error, otherwise the previous status is
  2010. returned.
  2011. @end deftypefun
  2012. @deftypefun int starpu_profiling_status_get (void)
  2013. Return the current profiling status or a negative value in case there was an error.
  2014. @end deftypefun
  2015. @deftypefun void starpu_set_profiling_id (int @var{new_id})
  2016. This function sets the ID used for profiling trace filename. It needs to be
  2017. called before starpu_init.
  2018. @end deftypefun
  2019. @deftp {Data Type} {struct starpu_task_profiling_info}
  2020. This structure contains information about the execution of a task. It is
  2021. accessible from the @code{.profiling_info} field of the @code{starpu_task}
  2022. structure if profiling was enabled. The different fields are:
  2023. @table @asis
  2024. @item @code{struct timespec submit_time}
  2025. Date of task submission (relative to the initialization of StarPU).
  2026. @item @code{struct timespec push_start_time}
  2027. Time when the task was submitted to the scheduler.
  2028. @item @code{struct timespec push_end_time}
  2029. Time when the scheduler finished with the task submission.
  2030. @item @code{struct timespec pop_start_time}
  2031. Time when the scheduler started to be requested for a task, and eventually gave
  2032. that task.
  2033. @item @code{struct timespec pop_end_time}
  2034. Time when the scheduler finished providing the task for execution.
  2035. @item @code{struct timespec acquire_data_start_time}
  2036. Time when the worker started fetching input data.
  2037. @item @code{struct timespec acquire_data_end_time}
  2038. Time when the worker finished fetching input data.
  2039. @item @code{struct timespec start_time}
  2040. Date of task execution beginning (relative to the initialization of StarPU).
  2041. @item @code{struct timespec end_time}
  2042. Date of task execution termination (relative to the initialization of StarPU).
  2043. @item @code{struct timespec release_data_start_time}
  2044. Time when the worker started releasing data.
  2045. @item @code{struct timespec release_data_end_time}
  2046. Time when the worker finished releasing data.
  2047. @item @code{struct timespec callback_start_time}
  2048. Time when the worker started the application callback for the task.
  2049. @item @code{struct timespec callback_end_time}
  2050. Time when the worker finished the application callback for the task.
  2051. @item @code{workerid}
  2052. Identifier of the worker which has executed the task.
  2053. @item @code{uint64_t used_cycles}
  2054. Number of cycles used by the task, only available in the MoviSim
  2055. @item @code{uint64_t stall_cycles}
  2056. Number of cycles stalled within the task, only available in the MoviSim
  2057. @item @code{double power_consumed}
  2058. Power consumed by the task, only available in the MoviSim
  2059. @end table
  2060. @end deftp
  2061. @deftp {Data Type} {struct starpu_worker_profiling_info}
  2062. This structure contains the profiling information associated to a
  2063. worker. The different fields are:
  2064. @table @asis
  2065. @item @code{struct timespec start_time}
  2066. Starting date for the reported profiling measurements.
  2067. @item @code{struct timespec total_time}
  2068. Duration of the profiling measurement interval.
  2069. @item @code{struct timespec executing_time}
  2070. Time spent by the worker to execute tasks during the profiling measurement interval.
  2071. @item @code{struct timespec sleeping_time}
  2072. Time spent idling by the worker during the profiling measurement interval.
  2073. @item @code{int executed_tasks}
  2074. Number of tasks executed by the worker during the profiling measurement interval.
  2075. @item @code{uint64_t used_cycles}
  2076. Number of cycles used by the worker, only available in the MoviSim
  2077. @item @code{uint64_t stall_cycles}
  2078. Number of cycles stalled within the worker, only available in the MoviSim
  2079. @item @code{double power_consumed}
  2080. Power consumed by the worker, only available in the MoviSim
  2081. @end table
  2082. @end deftp
  2083. @deftypefun int starpu_worker_get_profiling_info (int @var{workerid}, {struct starpu_worker_profiling_info *}@var{worker_info})
  2084. Get the profiling info associated to the worker identified by @var{workerid},
  2085. and reset the profiling measurements. If the @var{worker_info} argument is
  2086. NULL, only reset the counters associated to worker @var{workerid}.
  2087. Upon successful completion, this function returns 0. Otherwise, a negative
  2088. value is returned.
  2089. @end deftypefun
  2090. @deftp {Data Type} {struct starpu_bus_profiling_info}
  2091. The different fields are:
  2092. @table @asis
  2093. @item @code{struct timespec start_time}
  2094. Time of bus profiling startup.
  2095. @item @code{struct timespec total_time}
  2096. Total time of bus profiling.
  2097. @item @code{int long long transferred_bytes}
  2098. Number of bytes transferred during profiling.
  2099. @item @code{int transfer_count}
  2100. Number of transfers during profiling.
  2101. @end table
  2102. @end deftp
  2103. @deftypefun int starpu_bus_get_profiling_info (int @var{busid}, {struct starpu_bus_profiling_info *}@var{bus_info})
  2104. Get the profiling info associated to the worker designated by @var{workerid},
  2105. and reset the profiling measurements. If worker_info is NULL, only reset the
  2106. counters.
  2107. @end deftypefun
  2108. @deftypefun int starpu_bus_get_count (void)
  2109. Return the number of buses in the machine.
  2110. @end deftypefun
  2111. @deftypefun int starpu_bus_get_id (int @var{src}, int @var{dst})
  2112. Return the identifier of the bus between @var{src} and @var{dst}
  2113. @end deftypefun
  2114. @deftypefun int starpu_bus_get_src (int @var{busid})
  2115. Return the source point of bus @var{busid}
  2116. @end deftypefun
  2117. @deftypefun int starpu_bus_get_dst (int @var{busid})
  2118. Return the destination point of bus @var{busid}
  2119. @end deftypefun
  2120. @deftypefun double starpu_timing_timespec_delay_us ({struct timespec} *@var{start}, {struct timespec} *@var{end})
  2121. Returns the time elapsed between @var{start} and @var{end} in microseconds.
  2122. @end deftypefun
  2123. @deftypefun double starpu_timing_timespec_to_us ({struct timespec} *@var{ts})
  2124. Converts the given timespec @var{ts} into microseconds.
  2125. @end deftypefun
  2126. @deftypefun void starpu_bus_profiling_helper_display_summary (void)
  2127. Displays statistics about the bus on stderr. if the environment
  2128. variable @code{STARPU_BUS_STATS} is defined. The function is called
  2129. automatically by @code{starpu_shutdown()}.
  2130. @end deftypefun
  2131. @deftypefun void starpu_worker_profiling_helper_display_summary (void)
  2132. Displays statistics about the workers on stderr if the environment
  2133. variable @code{STARPU_WORKER_STATS} is defined. The function is called
  2134. automatically by @code{starpu_shutdown()}.
  2135. @end deftypefun
  2136. @deftypefun void starpu_memory_display_stats ()
  2137. Display statistics about the current data handles registered within
  2138. StarPU. StarPU must have been configured with the option
  2139. @code{----enable-memory-stats} (@pxref{Memory feedback}).
  2140. @end deftypefun
  2141. @node CUDA extensions
  2142. @section CUDA extensions
  2143. @defmac STARPU_USE_CUDA
  2144. This macro is defined when StarPU has been installed with CUDA
  2145. support. It should be used in your code to detect the availability of
  2146. CUDA as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  2147. @end defmac
  2148. @deftypefun cudaStream_t starpu_cuda_get_local_stream (void)
  2149. This function gets the current worker's CUDA stream.
  2150. StarPU provides a stream for every CUDA device controlled by StarPU. This
  2151. function is only provided for convenience so that programmers can easily use
  2152. asynchronous operations within codelets without having to create a stream by
  2153. hand. Note that the application is not forced to use the stream provided by
  2154. @code{starpu_cuda_get_local_stream} and may also create its own streams.
  2155. Synchronizing with @code{cudaThreadSynchronize()} is allowed, but will reduce
  2156. the likelihood of having all transfers overlapped.
  2157. @end deftypefun
  2158. @deftypefun {const struct cudaDeviceProp *} starpu_cuda_get_device_properties (unsigned @var{workerid})
  2159. This function returns a pointer to device properties for worker @var{workerid}
  2160. (assumed to be a CUDA worker).
  2161. @end deftypefun
  2162. @deftypefun void starpu_cuda_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cudaError_t @var{status})
  2163. Report a CUDA error.
  2164. @end deftypefun
  2165. @defmac STARPU_CUDA_REPORT_ERROR (cudaError_t @var{status})
  2166. Calls starpu_cuda_report_error, passing the current function, file and line
  2167. position.
  2168. @end defmac
  2169. @deftypefun int starpu_cuda_copy_async_sync ({void *}@var{src_ptr}, unsigned @var{src_node}, {void *}@var{dst_ptr}, unsigned @var{dst_node}, size_t @var{ssize}, cudaStream_t @var{stream}, {enum cudaMemcpyKind} @var{kind})
  2170. Copy @var{ssize} bytes from the pointer @var{src_ptr} on
  2171. @var{src_node} to the pointer @var{dst_ptr} on @var{dst_node}.
  2172. The function first tries to copy the data asynchronous (unless
  2173. @var{stream} is @code{NULL}. If the asynchronous copy fails or if
  2174. @var{stream} is @code{NULL}, it copies the data synchronously.
  2175. The function returns @code{-EAGAIN} if the asynchronous launch was
  2176. successfull. It returns 0 if the synchronous copy was successful, or
  2177. fails otherwise.
  2178. @end deftypefun
  2179. @deftypefun void starpu_cuda_set_device (unsigned @var{devid})
  2180. Calls @code{cudaSetDevice(devid)} or @code{cudaGLSetGLDevice(devid)}, according to
  2181. whether @code{devid} is among the @code{cuda_opengl_interoperability} field of
  2182. the @code{starpu_conf} structure.
  2183. @end deftypefun
  2184. @deftypefun void starpu_cublas_init (void)
  2185. This function initializes CUBLAS on every CUDA device.
  2186. The CUBLAS library must be initialized prior to any CUBLAS call. Calling
  2187. @code{starpu_cublas_init} will initialize CUBLAS on every CUDA device
  2188. controlled by StarPU. This call blocks until CUBLAS has been properly
  2189. initialized on every device.
  2190. @end deftypefun
  2191. @deftypefun void starpu_cublas_shutdown (void)
  2192. This function synchronously deinitializes the CUBLAS library on every CUDA device.
  2193. @end deftypefun
  2194. @deftypefun void starpu_cublas_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, cublasStatus @var{status})
  2195. Report a cublas error.
  2196. @end deftypefun
  2197. @defmac STARPU_CUBLAS_REPORT_ERROR (cublasStatus @var{status})
  2198. Calls starpu_cublas_report_error, passing the current function, file and line
  2199. position.
  2200. @end defmac
  2201. @node OpenCL extensions
  2202. @section OpenCL extensions
  2203. @menu
  2204. * Writing OpenCL kernels:: Writing OpenCL kernels
  2205. * Compiling OpenCL kernels:: Compiling OpenCL kernels
  2206. * Loading OpenCL kernels:: Loading OpenCL kernels
  2207. * OpenCL statistics:: Collecting statistics from OpenCL
  2208. * OpenCL utilities:: Utilities for OpenCL
  2209. @end menu
  2210. @defmac STARPU_USE_OPENCL
  2211. This macro is defined when StarPU has been installed with OpenCL
  2212. support. It should be used in your code to detect the availability of
  2213. OpenCL as shown in @ref{Full source code for the 'Scaling a Vector' example}.
  2214. @end defmac
  2215. @node Writing OpenCL kernels
  2216. @subsection Writing OpenCL kernels
  2217. @deftypefun void starpu_opencl_get_context (int @var{devid}, {cl_context *}@var{context})
  2218. Places the OpenCL context of the device designated by @var{devid} into @var{context}.
  2219. @end deftypefun
  2220. @deftypefun void starpu_opencl_get_device (int @var{devid}, {cl_device_id *}@var{device})
  2221. Places the cl_device_id corresponding to @var{devid} in @var{device}.
  2222. @end deftypefun
  2223. @deftypefun void starpu_opencl_get_queue (int @var{devid}, {cl_command_queue *}@var{queue})
  2224. Places the command queue of the the device designated by @var{devid} into @var{queue}.
  2225. @end deftypefun
  2226. @deftypefun void starpu_opencl_get_current_context ({cl_context *}@var{context})
  2227. Return the context of the current worker.
  2228. @end deftypefun
  2229. @deftypefun void starpu_opencl_get_current_queue ({cl_command_queue *}@var{queue})
  2230. Return the computation kernel command queue of the current worker.
  2231. @end deftypefun
  2232. @deftypefun int starpu_opencl_set_kernel_args ({cl_int *}@var{err}, {cl_kernel *}@var{kernel}, ...)
  2233. Sets the arguments of a given kernel. The list of arguments must be given as
  2234. (size_t @var{size_of_the_argument}, cl_mem * @var{pointer_to_the_argument}).
  2235. The last argument must be 0. Returns the number of arguments that were
  2236. successfully set. In case of failure, returns the id of the argument
  2237. that could not be set and @var{err} is set to the error returned by
  2238. OpenCL. Otherwise, returns the number of arguments that were set.
  2239. @cartouche
  2240. @smallexample
  2241. int n;
  2242. cl_int err;
  2243. cl_kernel kernel;
  2244. n = starpu_opencl_set_kernel_args(&err, 2, &kernel,
  2245. sizeof(foo), &foo,
  2246. sizeof(bar), &bar,
  2247. 0);
  2248. if (n != 2)
  2249. fprintf(stderr, "Error : %d\n", err);
  2250. @end smallexample
  2251. @end cartouche
  2252. @end deftypefun
  2253. @node Compiling OpenCL kernels
  2254. @subsection Compiling OpenCL kernels
  2255. Source codes for OpenCL kernels can be stored in a file or in a
  2256. string. StarPU provides functions to build the program executable for
  2257. each available OpenCL device as a @code{cl_program} object. This
  2258. program executable can then be loaded within a specific queue as
  2259. explained in the next section. These are only helpers, Applications
  2260. can also fill a @code{starpu_opencl_program} array by hand for more advanced
  2261. use (e.g. different programs on the different OpenCL devices, for
  2262. relocation purpose for instance).
  2263. @deftp {Data Type} {struct starpu_opencl_program}
  2264. Stores the OpenCL programs as compiled for the different OpenCL
  2265. devices. The different fields are:
  2266. @table @asis
  2267. @item @code{cl_program programs[STARPU_MAXOPENCLDEVS]}
  2268. Stores each program for each OpenCL device.
  2269. @end table
  2270. @end deftp
  2271. @deftypefun int starpu_opencl_load_opencl_from_file ({const char} *@var{source_file_name}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  2272. @anchor{starpu_opencl_load_opencl_from_file}
  2273. This function compiles an OpenCL source code stored in a file.
  2274. @end deftypefun
  2275. @deftypefun int starpu_opencl_load_opencl_from_string ({const char} *@var{opencl_program_source}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char}* @var{build_options})
  2276. This function compiles an OpenCL source code stored in a string.
  2277. @end deftypefun
  2278. @deftypefun int starpu_opencl_unload_opencl ({struct starpu_opencl_program} *@var{opencl_programs})
  2279. This function unloads an OpenCL compiled code.
  2280. @end deftypefun
  2281. @deftypefun void starpu_opencl_load_program_source ({const char *}@var{source_file_name}, char *@var{located_file_name}, char *@var{located_dir_name}, char *@var{opencl_program_source})
  2282. @anchor{starpu_opencl_load_program_source}
  2283. Store the contents of the file @var{source_file_name} in the buffer
  2284. @var{opencl_program_source}. The file @var{source_file_name} can be
  2285. located in the current directory, or in the directory specified by the
  2286. environment variable @code{STARPU_OPENCL_PROGRAM_DIR} (@pxref{STARPU_OPENCL_PROGRAM_DIR}), or in the
  2287. directory @code{share/starpu/opencl} of the installation directory of
  2288. StarPU, or in the source directory of StarPU.
  2289. When the file is found, @code{located_file_name} is the full name of
  2290. the file as it has been located on the system, @code{located_dir_name}
  2291. the directory where it has been located. Otherwise, they are both set
  2292. to the empty string.
  2293. @end deftypefun
  2294. @deftypefun int starpu_opencl_compile_opencl_from_file ({const char *}@var{source_file_name}, {const char *} @var{build_options})
  2295. Compile the OpenCL kernel stored in the file @code{source_file_name}
  2296. with the given options @code{build_options} and stores the result in
  2297. the directory @code{$STARPU_HOME/.starpu/opencl} with the same
  2298. filename as @code{source_file_name}. The compilation is done for every
  2299. OpenCL device, and the filename is suffixed with the vendor id and the
  2300. device id of the OpenCL device.
  2301. @end deftypefun
  2302. @deftypefun int starpu_opencl_compile_opencl_from_string ({const char *}@var{opencl_program_source}, {const char *}@var{file_name}, {const char* }@var{build_options})
  2303. Compile the OpenCL kernel in the string @code{opencl_program_source}
  2304. with the given options @code{build_options} and stores the result in
  2305. the directory @code{$STARPU_HOME/.starpu/opencl}
  2306. with the filename
  2307. @code{file_name}. The compilation is done for every
  2308. OpenCL device, and the filename is suffixed with the vendor id and the
  2309. device id of the OpenCL device.
  2310. @end deftypefun
  2311. @deftypefun int starpu_opencl_load_binary_opencl ({const char *}@var{kernel_id}, {struct starpu_opencl_program *}@var{opencl_programs})
  2312. Compile the binary OpenCL kernel identified with @var{id}. For every
  2313. OpenCL device, the binary OpenCL kernel will be loaded from the file
  2314. @code{$STARPU_HOME/.starpu/opencl/<kernel_id>.<device_type>.vendor_id_<vendor_id>_device_id_<device_id>}.
  2315. @end deftypefun
  2316. @node Loading OpenCL kernels
  2317. @subsection Loading OpenCL kernels
  2318. @deftypefun int starpu_opencl_load_kernel (cl_kernel *@var{kernel}, cl_command_queue *@var{queue}, {struct starpu_opencl_program} *@var{opencl_programs}, {const char} *@var{kernel_name}, int @var{devid})
  2319. Create a kernel @var{kernel} for device @var{devid}, on its computation command
  2320. queue returned in @var{queue}, using program @var{opencl_programs} and name
  2321. @var{kernel_name}
  2322. @end deftypefun
  2323. @deftypefun int starpu_opencl_release_kernel (cl_kernel @var{kernel})
  2324. Release the given @var{kernel}, to be called after kernel execution.
  2325. @end deftypefun
  2326. @node OpenCL statistics
  2327. @subsection OpenCL statistics
  2328. @deftypefun int starpu_opencl_collect_stats (cl_event @var{event})
  2329. This function allows to collect statistics on a kernel execution.
  2330. After termination of the kernels, the OpenCL codelet should call this function
  2331. to pass it the even returned by @code{clEnqueueNDRangeKernel}, to let StarPU
  2332. collect statistics about the kernel execution (used cycles, consumed power).
  2333. @end deftypefun
  2334. @node OpenCL utilities
  2335. @subsection OpenCL utilities
  2336. @deftypefun {const char *} starpu_opencl_error_string (cl_int @var{status})
  2337. Return the error message in English corresponding to @var{status}, an
  2338. OpenCL error code.
  2339. @end deftypefun
  2340. @deftypefun void starpu_opencl_display_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  2341. Given a valid error @var{status}, prints the corresponding error message on
  2342. stdout, along with the given function name @var{func}, the given filename
  2343. @var{file}, the given line number @var{line} and the given message @var{msg}.
  2344. @end deftypefun
  2345. @defmac STARPU_OPENCL_DISPLAY_ERROR (cl_int @var{status})
  2346. Call the function @code{starpu_opencl_display_error} with the given
  2347. error @var{status}, the current function name, current file and line
  2348. number, and a empty message.
  2349. @end defmac
  2350. @deftypefun void starpu_opencl_report_error ({const char *}@var{func}, {const char *}@var{file}, int @var{line}, {const char *}@var{msg}, cl_int @var{status})
  2351. Call the function @code{starpu_opencl_display_error} and abort.
  2352. @end deftypefun
  2353. @defmac STARPU_OPENCL_REPORT_ERROR (cl_int @var{status})
  2354. Call the function @code{starpu_opencl_report_error} with the given
  2355. error @var{status}, with the current function name, current file and
  2356. line number, and a empty message.
  2357. @end defmac
  2358. @defmac STARPU_OPENCL_REPORT_ERROR_WITH_MSG ({const char *}@var{msg}, cl_int @var{status})
  2359. Call the function @code{starpu_opencl_report_error} with the given
  2360. message and the given error @var{status}, with the current function
  2361. name, current file and line number.
  2362. @end defmac
  2363. @deftypefun cl_int starpu_opencl_allocate_memory ({cl_mem *}@var{addr}, size_t @var{size}, cl_mem_flags @var{flags})
  2364. Allocate @var{size} bytes of memory, stored in @var{addr}. @var{flags} must be a
  2365. valid combination of cl_mem_flags values.
  2366. @end deftypefun
  2367. @deftypefun cl_int starpu_opencl_copy_ram_to_opencl ({void *}@var{ptr}, unsigned @var{src_node}, cl_mem @var{buffer}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  2368. Copy @var{size} bytes from the given @var{ptr} on
  2369. RAM @var{src_node} to the given @var{buffer} on OpenCL @var{dst_node}.
  2370. @var{offset} is the offset, in bytes, in @var{buffer}.
  2371. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2372. synchronised before returning. If non NULL, @var{event} can be used
  2373. after the call to wait for this particular copy to complete.
  2374. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  2375. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous launch
  2376. was successful, or to 0 if event was NULL.
  2377. @end deftypefun
  2378. @deftypefun cl_int starpu_opencl_copy_opencl_to_ram (cl_mem @var{buffer}, unsigned @var{src_node}, void *@var{ptr}, unsigned @var{dst_node}, size_t @var{size}, size_t @var{offset}, {cl_event *}@var{event}, {int *}@var{ret})
  2379. Copy @var{size} bytes asynchronously from the given @var{buffer} on
  2380. OpenCL @var{src_node} to the given @var{ptr} on RAM @var{dst_node}.
  2381. @var{offset} is the offset, in bytes, in @var{buffer}.
  2382. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2383. synchronised before returning. If non NULL, @var{event} can be used
  2384. after the call to wait for this particular copy to complete.
  2385. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  2386. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous launch
  2387. was successful, or to 0 if event was NULL.
  2388. @end deftypefun
  2389. @deftypefun cl_int starpu_opencl_copy_opencl_to_opencl (cl_mem @var{src}, unsigned @var{src_node}, size_t @var{src_offset}, cl_mem @var{dst}, unsigned @var{dst_node}, size_t @var{dst_offset}, size_t @var{size}, {cl_event *}@var{event}, {int *}@var{ret})
  2390. Copy @var{size} bytes asynchronously from byte offset @var{src_offset} of
  2391. @var{src} on OpenCL @var{src_node} to byte offset @var{dst_offset} of @var{dst} on
  2392. OpenCL @var{dst_node}.
  2393. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2394. synchronised before returning. If non NULL, @var{event} can be used
  2395. after the call to wait for this particular copy to complete.
  2396. This function returns CL_SUCCESS if the copy was successful, or a valid OpenCL error code
  2397. otherwise. The integer pointed to by @var{ret} is set to -EAGAIN if the asynchronous launch
  2398. was successful, or to 0 if event was NULL.
  2399. @end deftypefun
  2400. @deftypefun cl_int starpu_opencl_copy_async_sync (uintptr_t @var{src}, size_t @var{src_offset}, unsigned @var{src_node}, uintptr_t @var{dst}, size_t @var{dst_offset}, unsigned @var{dst_node}, size_t @var{size}, {cl_event *}@var{event})
  2401. Copy @var{size} bytes from byte offset @var{src_offset} of
  2402. @var{src} on @var{src_node} to byte offset @var{dst_offset} of @var{dst} on
  2403. @var{dst_node}. if @var{event} is NULL, the copy is synchronous, i.e the queue is
  2404. synchronised before returning. If non NULL, @var{event} can be used
  2405. after the call to wait for this particular copy to complete.
  2406. The function returns @code{-EAGAIN} if the asynchronous launch was
  2407. successfull. It returns 0 if the synchronous copy was successful, or
  2408. fails otherwise.
  2409. @end deftypefun
  2410. @node Miscellaneous helpers
  2411. @section Miscellaneous helpers
  2412. @deftypefun int starpu_data_cpy (starpu_data_handle_t @var{dst_handle}, starpu_data_handle_t @var{src_handle}, int @var{asynchronous}, void (*@var{callback_func})(void*), void *@var{callback_arg})
  2413. Copy the content of the @var{src_handle} into the @var{dst_handle} handle.
  2414. The @var{asynchronous} parameter indicates whether the function should
  2415. block or not. In the case of an asynchronous call, it is possible to
  2416. synchronize with the termination of this operation either by the means of
  2417. implicit dependencies (if enabled) or by calling
  2418. @code{starpu_task_wait_for_all()}. If @var{callback_func} is not @code{NULL},
  2419. this callback function is executed after the handle has been copied, and it is
  2420. given the @var{callback_arg} pointer as argument.
  2421. @end deftypefun
  2422. @deftypefun void starpu_execute_on_each_worker (void (*@var{func})(void *), void *@var{arg}, uint32_t @var{where})
  2423. This function executes the given function on a subset of workers.
  2424. When calling this method, the offloaded function specified by the first argument is
  2425. executed by every StarPU worker that may execute the function.
  2426. The second argument is passed to the offloaded function.
  2427. The last argument specifies on which types of processing units the function
  2428. should be executed. Similarly to the @var{where} field of the
  2429. @code{struct starpu_codelet} structure, it is possible to specify that the function
  2430. should be executed on every CUDA device and every CPU by passing
  2431. @code{STARPU_CPU|STARPU_CUDA}.
  2432. This function blocks until the function has been executed on every appropriate
  2433. processing units, so that it may not be called from a callback function for
  2434. instance.
  2435. @end deftypefun