shadow3d.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2012 Université de Bordeaux 1
  4. * Copyright (C) 2010, 2011, 2012 Centre National de la Recherche Scientifique
  5. *
  6. * StarPU is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU Lesser General Public License as published by
  8. * the Free Software Foundation; either version 2.1 of the License, or (at
  9. * your option) any later version.
  10. *
  11. * StarPU is distributed in the hope that it will be useful, but
  12. * WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  14. *
  15. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  16. */
  17. /*
  18. * This examplifies the use of the 3D matrix shadow filters: a source "matrix" of
  19. * NX*NY*NZ elements (plus SHADOW wrap-around elements) is partitioned into
  20. * matrices with some shadowing, and these are copied into a destination
  21. * "matrix2" of
  22. * NRPARTSX*NPARTSY*NPARTSZ*((NX/NPARTSX+2*SHADOWX)*(NY/NPARTSY+2*SHADOWY)*(NZ/NPARTSZ+2*SHADOWZ))
  23. * elements, partitioned in the traditionnal way, thus showing how shadowing
  24. * shows up.
  25. */
  26. #include <starpu.h>
  27. #include <starpu_cuda.h>
  28. /* Shadow width */
  29. #define SHADOWX 2
  30. #define SHADOWY 3
  31. #define SHADOWZ 4
  32. #define NX 12
  33. #define NY 9
  34. #define NZ 6
  35. #define PARTSX 4
  36. #define PARTSY 3
  37. #define PARTSZ 2
  38. #define FPRINTF(ofile, fmt, args ...) do { if (!getenv("STARPU_SSILENT")) {fprintf(ofile, fmt, ##args); }} while(0)
  39. void cpu_func(void *buffers[], void *cl_arg)
  40. {
  41. /* length of the shadowed source matrix */
  42. unsigned ldy = STARPU_BLOCK_GET_LDY(buffers[0]);
  43. unsigned ldz = STARPU_BLOCK_GET_LDZ(buffers[0]);
  44. unsigned x = STARPU_BLOCK_GET_NX(buffers[0]);
  45. unsigned y = STARPU_BLOCK_GET_NY(buffers[0]);
  46. unsigned z = STARPU_BLOCK_GET_NZ(buffers[0]);
  47. /* local copy of the shadowed source matrix pointer */
  48. int *val = (int *)STARPU_BLOCK_GET_PTR(buffers[0]);
  49. /* length of the destination matrix */
  50. unsigned ldy2 = STARPU_BLOCK_GET_LDY(buffers[1]);
  51. unsigned ldz2 = STARPU_BLOCK_GET_LDZ(buffers[1]);
  52. unsigned x2 = STARPU_BLOCK_GET_NX(buffers[1]);
  53. unsigned y2 = STARPU_BLOCK_GET_NY(buffers[1]);
  54. unsigned z2 = STARPU_BLOCK_GET_NZ(buffers[1]);
  55. /* local copy of the destination matrix pointer */
  56. int *val2 = (int *)STARPU_BLOCK_GET_PTR(buffers[1]);
  57. unsigned i, j, k;
  58. /* If things go right, sizes should match */
  59. STARPU_ASSERT(x == x2);
  60. STARPU_ASSERT(y == y2);
  61. STARPU_ASSERT(z == z2);
  62. for (k = 0; k < z; k++)
  63. for (j = 0; j < y; j++)
  64. for (i = 0; i < x; i++)
  65. val2[k*ldz2+j*ldy2+i] = val[k*ldz+j*ldy+i];
  66. }
  67. #ifdef STARPU_USE_CUDA
  68. void cuda_func(void *buffers[], void *cl_arg)
  69. {
  70. /* length of the shadowed source matrix */
  71. unsigned ldy = STARPU_BLOCK_GET_LDY(buffers[0]);
  72. unsigned ldz = STARPU_BLOCK_GET_LDZ(buffers[0]);
  73. unsigned x = STARPU_BLOCK_GET_NX(buffers[0]);
  74. unsigned y = STARPU_BLOCK_GET_NY(buffers[0]);
  75. unsigned z = STARPU_BLOCK_GET_NZ(buffers[0]);
  76. /* local copy of the shadowed source matrix pointer */
  77. int *val = (int *)STARPU_BLOCK_GET_PTR(buffers[0]);
  78. /* length of the destination matrix */
  79. unsigned ldy2 = STARPU_BLOCK_GET_LDY(buffers[1]);
  80. unsigned ldz2 = STARPU_BLOCK_GET_LDZ(buffers[1]);
  81. unsigned x2 = STARPU_BLOCK_GET_NX(buffers[1]);
  82. unsigned y2 = STARPU_BLOCK_GET_NY(buffers[1]);
  83. unsigned z2 = STARPU_BLOCK_GET_NZ(buffers[1]);
  84. /* local copy of the destination matrix pointer */
  85. int *val2 = (int *)STARPU_BLOCK_GET_PTR(buffers[1]);
  86. unsigned k;
  87. cudaError_t cures;
  88. /* If things go right, sizes should match */
  89. STARPU_ASSERT(x == x2);
  90. STARPU_ASSERT(y == y2);
  91. STARPU_ASSERT(z == z2);
  92. for (k = 0; k < z; k++) {
  93. cures = cudaMemcpy2DAsync(val2+k*ldz2, ldy2*sizeof(*val2), val+k*ldz, ldy*sizeof(*val),
  94. x*sizeof(*val), y, cudaMemcpyDeviceToDevice, starpu_cuda_get_local_stream());
  95. STARPU_ASSERT(!cures);
  96. }
  97. cures = cudaStreamSynchronize(starpu_cuda_get_local_stream());
  98. STARPU_ASSERT(!cures);
  99. }
  100. #endif
  101. int main(int argc, char **argv)
  102. {
  103. unsigned i, j, k, l, m, n;
  104. int matrix[NZ + 2*SHADOWZ][NY + 2*SHADOWY][NX + 2*SHADOWX];
  105. int matrix2[NZ + PARTSZ*2*SHADOWZ][NY + PARTSY*2*SHADOWY][NX + PARTSX*2*SHADOWX];
  106. starpu_data_handle_t handle, handle2;
  107. int ret;
  108. struct starpu_codelet cl =
  109. {
  110. .where = STARPU_CPU
  111. #ifdef STARPU_USE_CUDA
  112. |STARPU_CUDA
  113. #endif
  114. ,
  115. .cpu_funcs = {cpu_func, NULL},
  116. #ifdef STARPU_USE_CUDA
  117. .cuda_funcs = {cuda_func, NULL},
  118. #endif
  119. .nbuffers = 2,
  120. .modes = {STARPU_R, STARPU_W}
  121. };
  122. memset(matrix, -1, sizeof(matrix));
  123. for(k=1 ; k<=NZ ; k++)
  124. for(j=1 ; j<=NY ; j++)
  125. for(i=1 ; i<=NX ; i++)
  126. matrix[SHADOWZ+k-1][SHADOWY+j-1][SHADOWX+i-1] = i+j+k;
  127. /* Copy planes */
  128. for (k = SHADOWZ ; k<SHADOWZ+NZ ; k++)
  129. for (j = SHADOWY ; j<SHADOWY+NY ; j++)
  130. for(i=0 ; i<SHADOWX ; i++) {
  131. matrix[k][j][i] = matrix[k][j][i+NX];
  132. matrix[k][j][SHADOWX+NX+i] = matrix[k][j][SHADOWX+i];
  133. }
  134. for(k=SHADOWZ ; k<SHADOWZ+NZ ; k++)
  135. for(j=0 ; j<SHADOWY ; j++)
  136. for(i=SHADOWX ; i<SHADOWX+NX ; i++) {
  137. matrix[k][j][i] = matrix[k][j+NY][i];
  138. matrix[k][SHADOWY+NY+j][i] = matrix[k][SHADOWY+j][i];
  139. }
  140. for(k=0 ; k<SHADOWZ ; k++)
  141. for(j=SHADOWY ; j<SHADOWY+NY ; j++)
  142. for(i=SHADOWX ; i<SHADOWX+NX ; i++) {
  143. matrix[k][j][i] = matrix[k+NZ][j][i];
  144. matrix[SHADOWZ+NZ+k][j][i] = matrix[SHADOWZ+k][j][i];
  145. }
  146. /* Copy borders */
  147. for (k = SHADOWZ ; k<SHADOWZ+NZ ; k++)
  148. for(j=0 ; j<SHADOWY ; j++)
  149. for(i=0 ; i<SHADOWX ; i++) {
  150. matrix[k][j][i] = matrix[k][j+NY][i+NX];
  151. matrix[k][SHADOWY+NY+j][i] = matrix[k][SHADOWY+j][i+NX];
  152. matrix[k][SHADOWY+NY+j][SHADOWX+NX+i] = matrix[k][SHADOWY+j][SHADOWX+i];
  153. matrix[k][j][SHADOWX+NX+i] = matrix[k][j+NY][SHADOWX+i];
  154. }
  155. for(k=0 ; k<SHADOWZ ; k++)
  156. for (j = SHADOWY ; j<SHADOWY+NY ; j++)
  157. for(i=0 ; i<SHADOWX ; i++) {
  158. matrix[k][j][i] = matrix[k+NZ][j][i+NX];
  159. matrix[SHADOWZ+NZ+k][j][i] = matrix[SHADOWZ+k][j][i+NX];
  160. matrix[SHADOWZ+NZ+k][j][SHADOWX+NX+i] = matrix[SHADOWZ+k][j][SHADOWX+i];
  161. matrix[k][j][SHADOWX+NX+i] = matrix[k+NZ][j][SHADOWX+i];
  162. }
  163. for(k=0 ; k<SHADOWZ ; k++)
  164. for(j=0 ; j<SHADOWY ; j++)
  165. for(i=SHADOWX ; i<SHADOWX+NX ; i++) {
  166. matrix[k][j][i] = matrix[k+NZ][j+NY][i];
  167. matrix[SHADOWZ+NZ+k][j][i] = matrix[SHADOWZ+k][j+NY][i];
  168. matrix[SHADOWZ+NZ+k][SHADOWY+NY+j][i] = matrix[SHADOWZ+k][SHADOWY+j][i];
  169. matrix[k][SHADOWY+NY+j][i] = matrix[k+NZ][SHADOWY+j][i];
  170. }
  171. /* Copy corners */
  172. for(k=0 ; k<SHADOWZ ; k++)
  173. for(j=0 ; j<SHADOWY ; j++)
  174. for(i=0 ; i<SHADOWX ; i++) {
  175. matrix[k][j][i] = matrix[k+NZ][j+NY][i+NX];
  176. matrix[k][j][SHADOWX+NX+i] = matrix[k+NZ][j+NY][SHADOWX+i];
  177. matrix[k][SHADOWY+NY+j][i] = matrix[k+NZ][SHADOWY+j][i+NX];
  178. matrix[k][SHADOWY+NY+j][SHADOWX+NX+i] = matrix[k+NZ][SHADOWY+j][SHADOWX+i];
  179. matrix[SHADOWZ+NZ+k][j][i] = matrix[SHADOWZ+k][j+NY][i+NX];
  180. matrix[SHADOWZ+NZ+k][j][SHADOWX+NX+i] = matrix[SHADOWZ+k][j+NY][SHADOWX+i];
  181. matrix[SHADOWZ+NZ+k][SHADOWY+NY+j][i] = matrix[SHADOWZ+k][SHADOWY+j][i+NX];
  182. matrix[SHADOWZ+NZ+k][SHADOWY+NY+j][SHADOWX+NX+i] = matrix[SHADOWZ+k][SHADOWY+j][SHADOWX+i];
  183. }
  184. FPRINTF(stderr,"IN Matrix:\n");
  185. for(k=0 ; k<NZ + 2*SHADOWZ ; k++)
  186. {
  187. for(j=0 ; j<NY + 2*SHADOWY ; j++)
  188. {
  189. for(i=0 ; i<NX + 2*SHADOWX ; i++)
  190. FPRINTF(stderr, "%5d ", matrix[k][j][i]);
  191. FPRINTF(stderr,"\n");
  192. }
  193. FPRINTF(stderr,"\n\n");
  194. }
  195. FPRINTF(stderr,"\n");
  196. ret = starpu_init(NULL);
  197. if (ret == -ENODEV)
  198. exit(77);
  199. STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
  200. /* Declare source matrix to StarPU */
  201. starpu_block_data_register(&handle, 0, (uintptr_t)matrix,
  202. NX + 2*SHADOWX, (NX + 2*SHADOWX) * (NY + 2*SHADOWY),
  203. NX + 2*SHADOWX, NY + 2*SHADOWY, NZ + 2*SHADOWZ,
  204. sizeof(matrix[0][0][0]));
  205. /* Declare destination matrix to StarPU */
  206. starpu_block_data_register(&handle2, 0, (uintptr_t)matrix2,
  207. NX + PARTSX*2*SHADOWX, (NX + PARTSX*2*SHADOWX) * (NY + PARTSY*2*SHADOWY),
  208. NX + PARTSX*2*SHADOWX, NY + PARTSY*2*SHADOWY, NZ + PARTSZ*2*SHADOWZ,
  209. sizeof(matrix2[0][0][0]));
  210. /* Partition the source matrix in PARTSZ*PARTSY*PARTSX sub-matrices with shadows */
  211. /* NOTE: the resulting handles should only be used in read-only mode,
  212. * as StarPU will not know how the overlapping parts would have to be
  213. * combined. */
  214. struct starpu_data_filter fz =
  215. {
  216. .filter_func = starpu_depth_block_shadow_filter_func_block,
  217. .nchildren = PARTSZ,
  218. .filter_arg_ptr = (void*)(uintptr_t) SHADOWZ /* Shadow width */
  219. };
  220. struct starpu_data_filter fy =
  221. {
  222. .filter_func = starpu_vertical_block_shadow_filter_func_block,
  223. .nchildren = PARTSY,
  224. .filter_arg_ptr = (void*)(uintptr_t) SHADOWY /* Shadow width */
  225. };
  226. struct starpu_data_filter fx =
  227. {
  228. .filter_func = starpu_block_shadow_filter_func_block,
  229. .nchildren = PARTSX,
  230. .filter_arg_ptr = (void*)(uintptr_t) SHADOWX /* Shadow width */
  231. };
  232. starpu_data_map_filters(handle, 3, &fz, &fy, &fx);
  233. /* Partition the destination matrix in PARTSZ*PARTSY*PARTSX sub-matrices */
  234. struct starpu_data_filter fz2 =
  235. {
  236. .filter_func = starpu_depth_block_filter_func_block,
  237. .nchildren = PARTSZ,
  238. };
  239. struct starpu_data_filter fy2 =
  240. {
  241. .filter_func = starpu_vertical_block_filter_func_block,
  242. .nchildren = PARTSY,
  243. };
  244. struct starpu_data_filter fx2 =
  245. {
  246. .filter_func = starpu_block_filter_func_block,
  247. .nchildren = PARTSX,
  248. };
  249. starpu_data_map_filters(handle2, 3, &fz2, &fy2, &fx2);
  250. /* Submit a task on each sub-matrix */
  251. for (k=0; k<PARTSZ; k++)
  252. {
  253. for (j=0; j<PARTSY; j++)
  254. {
  255. for (i=0; i<PARTSX; i++)
  256. {
  257. starpu_data_handle_t sub_handle = starpu_data_get_sub_data(handle, 3, k, j, i);
  258. starpu_data_handle_t sub_handle2 = starpu_data_get_sub_data(handle2, 3, k, j, i);
  259. struct starpu_task *task = starpu_task_create();
  260. task->handles[0] = sub_handle;
  261. task->handles[1] = sub_handle2;
  262. task->cl = &cl;
  263. task->synchronous = 1;
  264. ret = starpu_task_submit(task);
  265. if (ret == -ENODEV) goto enodev;
  266. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
  267. }
  268. }
  269. }
  270. starpu_data_unpartition(handle, 0);
  271. starpu_data_unpartition(handle2, 0);
  272. starpu_data_unregister(handle);
  273. starpu_data_unregister(handle2);
  274. starpu_shutdown();
  275. FPRINTF(stderr,"OUT Matrix:\n");
  276. for(k=0 ; k<NZ + PARTSZ*2*SHADOWZ ; k++)
  277. {
  278. for(j=0 ; j<NY + PARTSY*2*SHADOWY ; j++)
  279. {
  280. for(i=0 ; i<NX + PARTSX*2*SHADOWX ; i++) {
  281. FPRINTF(stderr, "%5d ", matrix2[k][j][i]);
  282. }
  283. FPRINTF(stderr,"\n");
  284. }
  285. FPRINTF(stderr,"\n\n");
  286. }
  287. FPRINTF(stderr,"\n");
  288. for(k=0 ; k<PARTSZ ; k++)
  289. for(j=0 ; j<PARTSY ; j++)
  290. for(i=0 ; i<PARTSX ; i++)
  291. for (n=0 ; n<NZ/PARTSZ + 2*SHADOWZ ; n++)
  292. for (m=0 ; m<NY/PARTSY + 2*SHADOWY ; m++)
  293. for (l=0 ; l<NX/PARTSX + 2*SHADOWX ; l++)
  294. STARPU_ASSERT(matrix2[k*(NZ/PARTSZ+2*SHADOWZ)+n][j*(NY/PARTSY+2*SHADOWY)+m][i*(NX/PARTSX+2*SHADOWX)+l] ==
  295. matrix[k*(NZ/PARTSZ)+n][j*(NY/PARTSY)+m][i*(NX/PARTSX)+l]);
  296. return 0;
  297. enodev:
  298. FPRINTF(stderr, "WARNING: No one can execute this task\n");
  299. starpu_shutdown();
  300. return 77;
  301. }