| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346 | 
							- /* _starpu_dla_gbrcond.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- doublereal _starpu_dla_gbrcond__(char *trans, integer *n, integer *kl, integer *ku, 
 
- 	doublereal *ab, integer *ldab, doublereal *afb, integer *ldafb, 
 
- 	integer *ipiv, integer *cmode, doublereal *c__, integer *info, 
 
- 	doublereal *work, integer *iwork, ftnlen trans_len)
 
- {
 
-     /* System generated locals */
 
-     integer ab_dim1, ab_offset, afb_dim1, afb_offset, i__1, i__2, i__3, i__4;
 
-     doublereal ret_val, d__1;
 
-     /* Local variables */
 
-     integer i__, j, kd, ke;
 
-     doublereal tmp;
 
-     integer kase;
 
-     extern logical _starpu_lsame_(char *, char *);
 
-     integer isave[3];
 
-     extern /* Subroutine */ int _starpu_dlacn2_(integer *, doublereal *, doublereal *, 
 
- 	     integer *, doublereal *, integer *, integer *), _starpu_xerbla_(char *, 
 
- 	    integer *), _starpu_dgbtrs_(char *, integer *, integer *, integer 
 
- 	    *, integer *, doublereal *, integer *, integer *, doublereal *, 
 
- 	    integer *, integer *);
 
-     doublereal ainvnm;
 
-     logical notrans;
 
- /*     -- LAPACK routine (version 3.2.1)                               -- */
 
- /*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
 
- /*     -- Jason Riedy of Univ. of California Berkeley.                 -- */
 
- /*     -- April 2009                                                   -- */
 
- /*     -- LAPACK is a software package provided by Univ. of Tennessee, -- */
 
- /*     -- Univ. of California Berkeley and NAG Ltd.                    -- */
 
- /*     .. */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*     DLA_GERCOND Estimates the Skeel condition number of  op(A) * op2(C) */
 
- /*     where op2 is determined by CMODE as follows */
 
- /*     CMODE =  1    op2(C) = C */
 
- /*     CMODE =  0    op2(C) = I */
 
- /*     CMODE = -1    op2(C) = inv(C) */
 
- /*     The Skeel condition number  cond(A) = norminf( |inv(A)||A| ) */
 
- /*     is computed by computing scaling factors R such that */
 
- /*     diag(R)*A*op2(C) is row equilibrated and computing the standard */
 
- /*     infinity-norm condition number. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*     TRANS   (input) CHARACTER*1 */
 
- /*     Specifies the form of the system of equations: */
 
- /*       = 'N':  A * X = B     (No transpose) */
 
- /*       = 'T':  A**T * X = B  (Transpose) */
 
- /*       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose) */
 
- /*     N       (input) INTEGER */
 
- /*     The number of linear equations, i.e., the order of the */
 
- /*     matrix A.  N >= 0. */
 
- /*     KL      (input) INTEGER */
 
- /*     The number of subdiagonals within the band of A.  KL >= 0. */
 
- /*     KU      (input) INTEGER */
 
- /*     The number of superdiagonals within the band of A.  KU >= 0. */
 
- /*     AB      (input) DOUBLE PRECISION array, dimension (LDAB,N) */
 
- /*     On entry, the matrix A in band storage, in rows 1 to KL+KU+1. */
 
- /*     The j-th column of A is stored in the j-th column of the */
 
- /*     array AB as follows: */
 
- /*     AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl) */
 
- /*     LDAB    (input) INTEGER */
 
- /*     The leading dimension of the array AB.  LDAB >= KL+KU+1. */
 
- /*     AFB     (input) DOUBLE PRECISION array, dimension (LDAFB,N) */
 
- /*     Details of the LU factorization of the band matrix A, as */
 
- /*     computed by DGBTRF.  U is stored as an upper triangular */
 
- /*     band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, */
 
- /*     and the multipliers used during the factorization are stored */
 
- /*     in rows KL+KU+2 to 2*KL+KU+1. */
 
- /*     LDAFB   (input) INTEGER */
 
- /*     The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1. */
 
- /*     IPIV    (input) INTEGER array, dimension (N) */
 
- /*     The pivot indices from the factorization A = P*L*U */
 
- /*     as computed by DGBTRF; row i of the matrix was interchanged */
 
- /*     with row IPIV(i). */
 
- /*     CMODE   (input) INTEGER */
 
- /*     Determines op2(C) in the formula op(A) * op2(C) as follows: */
 
- /*     CMODE =  1    op2(C) = C */
 
- /*     CMODE =  0    op2(C) = I */
 
- /*     CMODE = -1    op2(C) = inv(C) */
 
- /*     C       (input) DOUBLE PRECISION array, dimension (N) */
 
- /*     The vector C in the formula op(A) * op2(C). */
 
- /*     INFO    (output) INTEGER */
 
- /*       = 0:  Successful exit. */
 
- /*     i > 0:  The ith argument is invalid. */
 
- /*     WORK    (input) DOUBLE PRECISION array, dimension (5*N). */
 
- /*     Workspace. */
 
- /*     IWORK   (input) INTEGER array, dimension (N). */
 
- /*     Workspace. */
 
- /*  ===================================================================== */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Local Arrays .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
-     /* Parameter adjustments */
 
-     ab_dim1 = *ldab;
 
-     ab_offset = 1 + ab_dim1;
 
-     ab -= ab_offset;
 
-     afb_dim1 = *ldafb;
 
-     afb_offset = 1 + afb_dim1;
 
-     afb -= afb_offset;
 
-     --ipiv;
 
-     --c__;
 
-     --work;
 
-     --iwork;
 
-     /* Function Body */
 
-     ret_val = 0.;
 
-     *info = 0;
 
-     notrans = _starpu_lsame_(trans, "N");
 
-     if (! notrans && ! _starpu_lsame_(trans, "T") && ! _starpu_lsame_(
 
- 	    trans, "C")) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     } else if (*kl < 0 || *kl > *n - 1) {
 
- 	*info = -3;
 
-     } else if (*ku < 0 || *ku > *n - 1) {
 
- 	*info = -4;
 
-     } else if (*ldab < *kl + *ku + 1) {
 
- 	*info = -6;
 
-     } else if (*ldafb < (*kl << 1) + *ku + 1) {
 
- 	*info = -8;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	_starpu_xerbla_("DLA_GBRCOND", &i__1);
 
- 	return ret_val;
 
-     }
 
-     if (*n == 0) {
 
- 	ret_val = 1.;
 
- 	return ret_val;
 
-     }
 
- /*     Compute the equilibration matrix R such that */
 
- /*     inv(R)*A*C has unit 1-norm. */
 
-     kd = *ku + 1;
 
-     ke = *kl + 1;
 
-     if (notrans) {
 
- 	i__1 = *n;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    tmp = 0.;
 
- 	    if (*cmode == 1) {
 
- /* Computing MAX */
 
- 		i__2 = i__ - *kl;
 
- /* Computing MIN */
 
- 		i__4 = i__ + *ku;
 
- 		i__3 = min(i__4,*n);
 
- 		for (j = max(i__2,1); j <= i__3; ++j) {
 
- 		    tmp += (d__1 = ab[kd + i__ - j + j * ab_dim1] * c__[j], 
 
- 			    abs(d__1));
 
- 		}
 
- 	    } else if (*cmode == 0) {
 
- /* Computing MAX */
 
- 		i__3 = i__ - *kl;
 
- /* Computing MIN */
 
- 		i__4 = i__ + *ku;
 
- 		i__2 = min(i__4,*n);
 
- 		for (j = max(i__3,1); j <= i__2; ++j) {
 
- 		    tmp += (d__1 = ab[kd + i__ - j + j * ab_dim1], abs(d__1));
 
- 		}
 
- 	    } else {
 
- /* Computing MAX */
 
- 		i__2 = i__ - *kl;
 
- /* Computing MIN */
 
- 		i__4 = i__ + *ku;
 
- 		i__3 = min(i__4,*n);
 
- 		for (j = max(i__2,1); j <= i__3; ++j) {
 
- 		    tmp += (d__1 = ab[kd + i__ - j + j * ab_dim1] / c__[j], 
 
- 			    abs(d__1));
 
- 		}
 
- 	    }
 
- 	    work[(*n << 1) + i__] = tmp;
 
- 	}
 
-     } else {
 
- 	i__1 = *n;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    tmp = 0.;
 
- 	    if (*cmode == 1) {
 
- /* Computing MAX */
 
- 		i__3 = i__ - *kl;
 
- /* Computing MIN */
 
- 		i__4 = i__ + *ku;
 
- 		i__2 = min(i__4,*n);
 
- 		for (j = max(i__3,1); j <= i__2; ++j) {
 
- 		    tmp += (d__1 = ab[ke - i__ + j + i__ * ab_dim1] * c__[j], 
 
- 			    abs(d__1));
 
- 		}
 
- 	    } else if (*cmode == 0) {
 
- /* Computing MAX */
 
- 		i__2 = i__ - *kl;
 
- /* Computing MIN */
 
- 		i__4 = i__ + *ku;
 
- 		i__3 = min(i__4,*n);
 
- 		for (j = max(i__2,1); j <= i__3; ++j) {
 
- 		    tmp += (d__1 = ab[ke - i__ + j + i__ * ab_dim1], abs(d__1)
 
- 			    );
 
- 		}
 
- 	    } else {
 
- /* Computing MAX */
 
- 		i__3 = i__ - *kl;
 
- /* Computing MIN */
 
- 		i__4 = i__ + *ku;
 
- 		i__2 = min(i__4,*n);
 
- 		for (j = max(i__3,1); j <= i__2; ++j) {
 
- 		    tmp += (d__1 = ab[ke - i__ + j + i__ * ab_dim1] / c__[j], 
 
- 			    abs(d__1));
 
- 		}
 
- 	    }
 
- 	    work[(*n << 1) + i__] = tmp;
 
- 	}
 
-     }
 
- /*     Estimate the norm of inv(op(A)). */
 
-     ainvnm = 0.;
 
-     kase = 0;
 
- L10:
 
-     _starpu_dlacn2_(n, &work[*n + 1], &work[1], &iwork[1], &ainvnm, &kase, isave);
 
-     if (kase != 0) {
 
- 	if (kase == 2) {
 
- /*           Multiply by R. */
 
- 	    i__1 = *n;
 
- 	    for (i__ = 1; i__ <= i__1; ++i__) {
 
- 		work[i__] *= work[(*n << 1) + i__];
 
- 	    }
 
- 	    if (notrans) {
 
- 		_starpu_dgbtrs_("No transpose", n, kl, ku, &c__1, &afb[afb_offset], 
 
- 			ldafb, &ipiv[1], &work[1], n, info);
 
- 	    } else {
 
- 		_starpu_dgbtrs_("Transpose", n, kl, ku, &c__1, &afb[afb_offset], 
 
- 			ldafb, &ipiv[1], &work[1], n, info);
 
- 	    }
 
- /*           Multiply by inv(C). */
 
- 	    if (*cmode == 1) {
 
- 		i__1 = *n;
 
- 		for (i__ = 1; i__ <= i__1; ++i__) {
 
- 		    work[i__] /= c__[i__];
 
- 		}
 
- 	    } else if (*cmode == -1) {
 
- 		i__1 = *n;
 
- 		for (i__ = 1; i__ <= i__1; ++i__) {
 
- 		    work[i__] *= c__[i__];
 
- 		}
 
- 	    }
 
- 	} else {
 
- /*           Multiply by inv(C'). */
 
- 	    if (*cmode == 1) {
 
- 		i__1 = *n;
 
- 		for (i__ = 1; i__ <= i__1; ++i__) {
 
- 		    work[i__] /= c__[i__];
 
- 		}
 
- 	    } else if (*cmode == -1) {
 
- 		i__1 = *n;
 
- 		for (i__ = 1; i__ <= i__1; ++i__) {
 
- 		    work[i__] *= c__[i__];
 
- 		}
 
- 	    }
 
- 	    if (notrans) {
 
- 		_starpu_dgbtrs_("Transpose", n, kl, ku, &c__1, &afb[afb_offset], 
 
- 			ldafb, &ipiv[1], &work[1], n, info);
 
- 	    } else {
 
- 		_starpu_dgbtrs_("No transpose", n, kl, ku, &c__1, &afb[afb_offset], 
 
- 			ldafb, &ipiv[1], &work[1], n, info);
 
- 	    }
 
- /*           Multiply by R. */
 
- 	    i__1 = *n;
 
- 	    for (i__ = 1; i__ <= i__1; ++i__) {
 
- 		work[i__] *= work[(*n << 1) + i__];
 
- 	    }
 
- 	}
 
- 	goto L10;
 
-     }
 
- /*     Compute the estimate of the reciprocal condition number. */
 
-     if (ainvnm != 0.) {
 
- 	ret_val = 1. / ainvnm;
 
-     }
 
-     return ret_val;
 
- } /* _starpu_dla_gbrcond__ */
 
 
  |