| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114 | /* dtgsy2.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__8 = 8;static integer c__1 = 1;static doublereal c_b27 = -1.;static doublereal c_b42 = 1.;static doublereal c_b56 = 0.;/* Subroutine */ int _starpu_dtgsy2_(char *trans, integer *ijob, integer *m, integer *	n, doublereal *a, integer *lda, doublereal *b, integer *ldb, 	doublereal *c__, integer *ldc, doublereal *d__, integer *ldd, 	doublereal *e, integer *lde, doublereal *f, integer *ldf, doublereal *	scale, doublereal *rdsum, doublereal *rdscal, integer *iwork, integer 	*pq, integer *info){    /* System generated locals */    integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, d_dim1, 	    d_offset, e_dim1, e_offset, f_dim1, f_offset, i__1, i__2, i__3;    /* Local variables */    integer i__, j, k, p, q;    doublereal z__[64]	/* was [8][8] */;    integer ie, je, mb, nb, ii, jj, is, js;    doublereal rhs[8];    integer isp1, jsp1;    extern /* Subroutine */ int _starpu_dger_(integer *, integer *, doublereal *, 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 	    integer *);    integer ierr, zdim, ipiv[8], jpiv[8];    doublereal alpha;    extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *, 	    integer *), _starpu_dgemm_(char *, char *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, doublereal *, integer *);    extern logical _starpu_lsame_(char *, char *);    extern /* Subroutine */ int _starpu_dgemv_(char *, integer *, integer *, 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, doublereal *, integer *), _starpu_dcopy_(integer *, 	    doublereal *, integer *, doublereal *, integer *), _starpu_daxpy_(integer 	    *, doublereal *, doublereal *, integer *, doublereal *, integer *)	    , _starpu_dgesc2_(integer *, doublereal *, integer *, doublereal *, 	    integer *, integer *, doublereal *), _starpu_dgetc2_(integer *, 	    doublereal *, integer *, integer *, integer *, integer *), 	    _starpu_dlatdf_(integer *, integer *, doublereal *, integer *, doublereal 	    *, doublereal *, doublereal *, integer *, integer *);    doublereal scaloc;    extern /* Subroutine */ int _starpu_dlaset_(char *, integer *, integer *, 	    doublereal *, doublereal *, doublereal *, integer *), 	    _starpu_xerbla_(char *, integer *);    logical notran;/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     January 2007 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DTGSY2 solves the generalized Sylvester equation: *//*              A * R - L * B = scale * C                (1) *//*              D * R - L * E = scale * F, *//*  using Level 1 and 2 BLAS. where R and L are unknown M-by-N matrices, *//*  (A, D), (B, E) and (C, F) are given matrix pairs of size M-by-M, *//*  N-by-N and M-by-N, respectively, with real entries. (A, D) and (B, E) *//*  must be in generalized Schur canonical form, i.e. A, B are upper *//*  quasi triangular and D, E are upper triangular. The solution (R, L) *//*  overwrites (C, F). 0 <= SCALE <= 1 is an output scaling factor *//*  chosen to avoid overflow. *//*  In matrix notation solving equation (1) corresponds to solve *//*  Z*x = scale*b, where Z is defined as *//*         Z = [ kron(In, A)  -kron(B', Im) ]             (2) *//*             [ kron(In, D)  -kron(E', Im) ], *//*  Ik is the identity matrix of size k and X' is the transpose of X. *//*  kron(X, Y) is the Kronecker product between the matrices X and Y. *//*  In the process of solving (1), we solve a number of such systems *//*  where Dim(In), Dim(In) = 1 or 2. *//*  If TRANS = 'T', solve the transposed system Z'*y = scale*b for y, *//*  which is equivalent to solve for R and L in *//*              A' * R  + D' * L   = scale *  C           (3) *//*              R  * B' + L  * E'  = scale * -F *//*  This case is used to compute an estimate of Dif[(A, D), (B, E)] = *//*  sigma_min(Z) using reverse communicaton with DLACON. *//*  DTGSY2 also (IJOB >= 1) contributes to the computation in DTGSYL *//*  of an upper bound on the separation between to matrix pairs. Then *//*  the input (A, D), (B, E) are sub-pencils of the matrix pair in *//*  DTGSYL. See DTGSYL for details. *//*  Arguments *//*  ========= *//*  TRANS   (input) CHARACTER*1 *//*          = 'N', solve the generalized Sylvester equation (1). *//*          = 'T': solve the 'transposed' system (3). *//*  IJOB    (input) INTEGER *//*          Specifies what kind of functionality to be performed. *//*          = 0: solve (1) only. *//*          = 1: A contribution from this subsystem to a Frobenius *//*               norm-based estimate of the separation between two matrix *//*               pairs is computed. (look ahead strategy is used). *//*          = 2: A contribution from this subsystem to a Frobenius *//*               norm-based estimate of the separation between two matrix *//*               pairs is computed. (DGECON on sub-systems is used.) *//*          Not referenced if TRANS = 'T'. *//*  M       (input) INTEGER *//*          On entry, M specifies the order of A and D, and the row *//*          dimension of C, F, R and L. *//*  N       (input) INTEGER *//*          On entry, N specifies the order of B and E, and the column *//*          dimension of C, F, R and L. *//*  A       (input) DOUBLE PRECISION array, dimension (LDA, M) *//*          On entry, A contains an upper quasi triangular matrix. *//*  LDA     (input) INTEGER *//*          The leading dimension of the matrix A. LDA >= max(1, M). *//*  B       (input) DOUBLE PRECISION array, dimension (LDB, N) *//*          On entry, B contains an upper quasi triangular matrix. *//*  LDB     (input) INTEGER *//*          The leading dimension of the matrix B. LDB >= max(1, N). *//*  C       (input/output) DOUBLE PRECISION array, dimension (LDC, N) *//*          On entry, C contains the right-hand-side of the first matrix *//*          equation in (1). *//*          On exit, if IJOB = 0, C has been overwritten by the *//*          solution R. *//*  LDC     (input) INTEGER *//*          The leading dimension of the matrix C. LDC >= max(1, M). *//*  D       (input) DOUBLE PRECISION array, dimension (LDD, M) *//*          On entry, D contains an upper triangular matrix. *//*  LDD     (input) INTEGER *//*          The leading dimension of the matrix D. LDD >= max(1, M). *//*  E       (input) DOUBLE PRECISION array, dimension (LDE, N) *//*          On entry, E contains an upper triangular matrix. *//*  LDE     (input) INTEGER *//*          The leading dimension of the matrix E. LDE >= max(1, N). *//*  F       (input/output) DOUBLE PRECISION array, dimension (LDF, N) *//*          On entry, F contains the right-hand-side of the second matrix *//*          equation in (1). *//*          On exit, if IJOB = 0, F has been overwritten by the *//*          solution L. *//*  LDF     (input) INTEGER *//*          The leading dimension of the matrix F. LDF >= max(1, M). *//*  SCALE   (output) DOUBLE PRECISION *//*          On exit, 0 <= SCALE <= 1. If 0 < SCALE < 1, the solutions *//*          R and L (C and F on entry) will hold the solutions to a *//*          slightly perturbed system but the input matrices A, B, D and *//*          E have not been changed. If SCALE = 0, R and L will hold the *//*          solutions to the homogeneous system with C = F = 0. Normally, *//*          SCALE = 1. *//*  RDSUM   (input/output) DOUBLE PRECISION *//*          On entry, the sum of squares of computed contributions to *//*          the Dif-estimate under computation by DTGSYL, where the *//*          scaling factor RDSCAL (see below) has been factored out. *//*          On exit, the corresponding sum of squares updated with the *//*          contributions from the current sub-system. *//*          If TRANS = 'T' RDSUM is not touched. *//*          NOTE: RDSUM only makes sense when DTGSY2 is called by DTGSYL. *//*  RDSCAL  (input/output) DOUBLE PRECISION *//*          On entry, scaling factor used to prevent overflow in RDSUM. *//*          On exit, RDSCAL is updated w.r.t. the current contributions *//*          in RDSUM. *//*          If TRANS = 'T', RDSCAL is not touched. *//*          NOTE: RDSCAL only makes sense when DTGSY2 is called by *//*                DTGSYL. *//*  IWORK   (workspace) INTEGER array, dimension (M+N+2) *//*  PQ      (output) INTEGER *//*          On exit, the number of subsystems (of size 2-by-2, 4-by-4 and *//*          8-by-8) solved by this routine. *//*  INFO    (output) INTEGER *//*          On exit, if INFO is set to *//*            =0: Successful exit *//*            <0: If INFO = -i, the i-th argument had an illegal value. *//*            >0: The matrix pairs (A, D) and (B, E) have common or very *//*                close eigenvalues. *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Bo Kagstrom and Peter Poromaa, Department of Computing Science, *//*     Umea University, S-901 87 Umea, Sweden. *//*  ===================================================================== *//*  Replaced various illegal calls to DCOPY by calls to DLASET. *//*  Sven Hammarling, 27/5/02. *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Local Arrays .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Decode and test input parameters */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    c_dim1 = *ldc;    c_offset = 1 + c_dim1;    c__ -= c_offset;    d_dim1 = *ldd;    d_offset = 1 + d_dim1;    d__ -= d_offset;    e_dim1 = *lde;    e_offset = 1 + e_dim1;    e -= e_offset;    f_dim1 = *ldf;    f_offset = 1 + f_dim1;    f -= f_offset;    --iwork;    /* Function Body */    *info = 0;    ierr = 0;    notran = _starpu_lsame_(trans, "N");    if (! notran && ! _starpu_lsame_(trans, "T")) {	*info = -1;    } else if (notran) {	if (*ijob < 0 || *ijob > 2) {	    *info = -2;	}    }    if (*info == 0) {	if (*m <= 0) {	    *info = -3;	} else if (*n <= 0) {	    *info = -4;	} else if (*lda < max(1,*m)) {	    *info = -5;	} else if (*ldb < max(1,*n)) {	    *info = -8;	} else if (*ldc < max(1,*m)) {	    *info = -10;	} else if (*ldd < max(1,*m)) {	    *info = -12;	} else if (*lde < max(1,*n)) {	    *info = -14;	} else if (*ldf < max(1,*m)) {	    *info = -16;	}    }    if (*info != 0) {	i__1 = -(*info);	_starpu_xerbla_("DTGSY2", &i__1);	return 0;    }/*     Determine block structure of A */    *pq = 0;    p = 0;    i__ = 1;L10:    if (i__ > *m) {	goto L20;    }    ++p;    iwork[p] = i__;    if (i__ == *m) {	goto L20;    }    if (a[i__ + 1 + i__ * a_dim1] != 0.) {	i__ += 2;    } else {	++i__;    }    goto L10;L20:    iwork[p + 1] = *m + 1;/*     Determine block structure of B */    q = p + 1;    j = 1;L30:    if (j > *n) {	goto L40;    }    ++q;    iwork[q] = j;    if (j == *n) {	goto L40;    }    if (b[j + 1 + j * b_dim1] != 0.) {	j += 2;    } else {	++j;    }    goto L30;L40:    iwork[q + 1] = *n + 1;    *pq = p * (q - p - 1);    if (notran) {/*        Solve (I, J) - subsystem *//*           A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J) *//*           D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J) *//*        for I = P, P - 1, ..., 1; J = 1, 2, ..., Q */	*scale = 1.;	scaloc = 1.;	i__1 = q;	for (j = p + 2; j <= i__1; ++j) {	    js = iwork[j];	    jsp1 = js + 1;	    je = iwork[j + 1] - 1;	    nb = je - js + 1;	    for (i__ = p; i__ >= 1; --i__) {		is = iwork[i__];		isp1 = is + 1;		ie = iwork[i__ + 1] - 1;		mb = ie - is + 1;		zdim = mb * nb << 1;		if (mb == 1 && nb == 1) {/*                 Build a 2-by-2 system Z * x = RHS */		    z__[0] = a[is + is * a_dim1];		    z__[1] = d__[is + is * d_dim1];		    z__[8] = -b[js + js * b_dim1];		    z__[9] = -e[js + js * e_dim1];/*                 Set up right hand side(s) */		    rhs[0] = c__[is + js * c_dim1];		    rhs[1] = f[is + js * f_dim1];/*                 Solve Z * x = RHS */		    _starpu_dgetc2_(&zdim, z__, &c__8, ipiv, jpiv, &ierr);		    if (ierr > 0) {			*info = ierr;		    }		    if (*ijob == 0) {			_starpu_dgesc2_(&zdim, z__, &c__8, rhs, ipiv, jpiv, &scaloc);			if (scaloc != 1.) {			    i__2 = *n;			    for (k = 1; k <= i__2; ++k) {				_starpu_dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &					c__1);				_starpu_dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);/* L50: */			    }			    *scale *= scaloc;			}		    } else {			_starpu_dlatdf_(ijob, &zdim, z__, &c__8, rhs, rdsum, rdscal, 				ipiv, jpiv);		    }/*                 Unpack solution vector(s) */		    c__[is + js * c_dim1] = rhs[0];		    f[is + js * f_dim1] = rhs[1];/*                 Substitute R(I, J) and L(I, J) into remaining *//*                 equation. */		    if (i__ > 1) {			alpha = -rhs[0];			i__2 = is - 1;			_starpu_daxpy_(&i__2, &alpha, &a[is * a_dim1 + 1], &c__1, &				c__[js * c_dim1 + 1], &c__1);			i__2 = is - 1;			_starpu_daxpy_(&i__2, &alpha, &d__[is * d_dim1 + 1], &c__1, &				f[js * f_dim1 + 1], &c__1);		    }		    if (j < q) {			i__2 = *n - je;			_starpu_daxpy_(&i__2, &rhs[1], &b[js + (je + 1) * b_dim1], 				ldb, &c__[is + (je + 1) * c_dim1], ldc);			i__2 = *n - je;			_starpu_daxpy_(&i__2, &rhs[1], &e[js + (je + 1) * e_dim1], 				lde, &f[is + (je + 1) * f_dim1], ldf);		    }		} else if (mb == 1 && nb == 2) {/*                 Build a 4-by-4 system Z * x = RHS */		    z__[0] = a[is + is * a_dim1];		    z__[1] = 0.;		    z__[2] = d__[is + is * d_dim1];		    z__[3] = 0.;		    z__[8] = 0.;		    z__[9] = a[is + is * a_dim1];		    z__[10] = 0.;		    z__[11] = d__[is + is * d_dim1];		    z__[16] = -b[js + js * b_dim1];		    z__[17] = -b[js + jsp1 * b_dim1];		    z__[18] = -e[js + js * e_dim1];		    z__[19] = -e[js + jsp1 * e_dim1];		    z__[24] = -b[jsp1 + js * b_dim1];		    z__[25] = -b[jsp1 + jsp1 * b_dim1];		    z__[26] = 0.;		    z__[27] = -e[jsp1 + jsp1 * e_dim1];/*                 Set up right hand side(s) */		    rhs[0] = c__[is + js * c_dim1];		    rhs[1] = c__[is + jsp1 * c_dim1];		    rhs[2] = f[is + js * f_dim1];		    rhs[3] = f[is + jsp1 * f_dim1];/*                 Solve Z * x = RHS */		    _starpu_dgetc2_(&zdim, z__, &c__8, ipiv, jpiv, &ierr);		    if (ierr > 0) {			*info = ierr;		    }		    if (*ijob == 0) {			_starpu_dgesc2_(&zdim, z__, &c__8, rhs, ipiv, jpiv, &scaloc);			if (scaloc != 1.) {			    i__2 = *n;			    for (k = 1; k <= i__2; ++k) {				_starpu_dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &					c__1);				_starpu_dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);/* L60: */			    }			    *scale *= scaloc;			}		    } else {			_starpu_dlatdf_(ijob, &zdim, z__, &c__8, rhs, rdsum, rdscal, 				ipiv, jpiv);		    }/*                 Unpack solution vector(s) */		    c__[is + js * c_dim1] = rhs[0];		    c__[is + jsp1 * c_dim1] = rhs[1];		    f[is + js * f_dim1] = rhs[2];		    f[is + jsp1 * f_dim1] = rhs[3];/*                 Substitute R(I, J) and L(I, J) into remaining *//*                 equation. */		    if (i__ > 1) {			i__2 = is - 1;			_starpu_dger_(&i__2, &nb, &c_b27, &a[is * a_dim1 + 1], &c__1, 				rhs, &c__1, &c__[js * c_dim1 + 1], ldc);			i__2 = is - 1;			_starpu_dger_(&i__2, &nb, &c_b27, &d__[is * d_dim1 + 1], &				c__1, rhs, &c__1, &f[js * f_dim1 + 1], ldf);		    }		    if (j < q) {			i__2 = *n - je;			_starpu_daxpy_(&i__2, &rhs[2], &b[js + (je + 1) * b_dim1], 				ldb, &c__[is + (je + 1) * c_dim1], ldc);			i__2 = *n - je;			_starpu_daxpy_(&i__2, &rhs[2], &e[js + (je + 1) * e_dim1], 				lde, &f[is + (je + 1) * f_dim1], ldf);			i__2 = *n - je;			_starpu_daxpy_(&i__2, &rhs[3], &b[jsp1 + (je + 1) * b_dim1], 				ldb, &c__[is + (je + 1) * c_dim1], ldc);			i__2 = *n - je;			_starpu_daxpy_(&i__2, &rhs[3], &e[jsp1 + (je + 1) * e_dim1], 				lde, &f[is + (je + 1) * f_dim1], ldf);		    }		} else if (mb == 2 && nb == 1) {/*                 Build a 4-by-4 system Z * x = RHS */		    z__[0] = a[is + is * a_dim1];		    z__[1] = a[isp1 + is * a_dim1];		    z__[2] = d__[is + is * d_dim1];		    z__[3] = 0.;		    z__[8] = a[is + isp1 * a_dim1];		    z__[9] = a[isp1 + isp1 * a_dim1];		    z__[10] = d__[is + isp1 * d_dim1];		    z__[11] = d__[isp1 + isp1 * d_dim1];		    z__[16] = -b[js + js * b_dim1];		    z__[17] = 0.;		    z__[18] = -e[js + js * e_dim1];		    z__[19] = 0.;		    z__[24] = 0.;		    z__[25] = -b[js + js * b_dim1];		    z__[26] = 0.;		    z__[27] = -e[js + js * e_dim1];/*                 Set up right hand side(s) */		    rhs[0] = c__[is + js * c_dim1];		    rhs[1] = c__[isp1 + js * c_dim1];		    rhs[2] = f[is + js * f_dim1];		    rhs[3] = f[isp1 + js * f_dim1];/*                 Solve Z * x = RHS */		    _starpu_dgetc2_(&zdim, z__, &c__8, ipiv, jpiv, &ierr);		    if (ierr > 0) {			*info = ierr;		    }		    if (*ijob == 0) {			_starpu_dgesc2_(&zdim, z__, &c__8, rhs, ipiv, jpiv, &scaloc);			if (scaloc != 1.) {			    i__2 = *n;			    for (k = 1; k <= i__2; ++k) {				_starpu_dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &					c__1);				_starpu_dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);/* L70: */			    }			    *scale *= scaloc;			}		    } else {			_starpu_dlatdf_(ijob, &zdim, z__, &c__8, rhs, rdsum, rdscal, 				ipiv, jpiv);		    }/*                 Unpack solution vector(s) */		    c__[is + js * c_dim1] = rhs[0];		    c__[isp1 + js * c_dim1] = rhs[1];		    f[is + js * f_dim1] = rhs[2];		    f[isp1 + js * f_dim1] = rhs[3];/*                 Substitute R(I, J) and L(I, J) into remaining *//*                 equation. */		    if (i__ > 1) {			i__2 = is - 1;			_starpu_dgemv_("N", &i__2, &mb, &c_b27, &a[is * a_dim1 + 1], 				lda, rhs, &c__1, &c_b42, &c__[js * c_dim1 + 1], &c__1);			i__2 = is - 1;			_starpu_dgemv_("N", &i__2, &mb, &c_b27, &d__[is * d_dim1 + 1], 				 ldd, rhs, &c__1, &c_b42, &f[js * f_dim1 + 1], 				 &c__1);		    }		    if (j < q) {			i__2 = *n - je;			_starpu_dger_(&mb, &i__2, &c_b42, &rhs[2], &c__1, &b[js + (je 				+ 1) * b_dim1], ldb, &c__[is + (je + 1) * 				c_dim1], ldc);			i__2 = *n - je;			_starpu_dger_(&mb, &i__2, &c_b42, &rhs[2], &c__1, &e[js + (je 				+ 1) * e_dim1], lde, &f[is + (je + 1) * 				f_dim1], ldf);		    }		} else if (mb == 2 && nb == 2) {/*                 Build an 8-by-8 system Z * x = RHS */		    _starpu_dlaset_("F", &c__8, &c__8, &c_b56, &c_b56, z__, &c__8);		    z__[0] = a[is + is * a_dim1];		    z__[1] = a[isp1 + is * a_dim1];		    z__[4] = d__[is + is * d_dim1];		    z__[8] = a[is + isp1 * a_dim1];		    z__[9] = a[isp1 + isp1 * a_dim1];		    z__[12] = d__[is + isp1 * d_dim1];		    z__[13] = d__[isp1 + isp1 * d_dim1];		    z__[18] = a[is + is * a_dim1];		    z__[19] = a[isp1 + is * a_dim1];		    z__[22] = d__[is + is * d_dim1];		    z__[26] = a[is + isp1 * a_dim1];		    z__[27] = a[isp1 + isp1 * a_dim1];		    z__[30] = d__[is + isp1 * d_dim1];		    z__[31] = d__[isp1 + isp1 * d_dim1];		    z__[32] = -b[js + js * b_dim1];		    z__[34] = -b[js + jsp1 * b_dim1];		    z__[36] = -e[js + js * e_dim1];		    z__[38] = -e[js + jsp1 * e_dim1];		    z__[41] = -b[js + js * b_dim1];		    z__[43] = -b[js + jsp1 * b_dim1];		    z__[45] = -e[js + js * e_dim1];		    z__[47] = -e[js + jsp1 * e_dim1];		    z__[48] = -b[jsp1 + js * b_dim1];		    z__[50] = -b[jsp1 + jsp1 * b_dim1];		    z__[54] = -e[jsp1 + jsp1 * e_dim1];		    z__[57] = -b[jsp1 + js * b_dim1];		    z__[59] = -b[jsp1 + jsp1 * b_dim1];		    z__[63] = -e[jsp1 + jsp1 * e_dim1];/*                 Set up right hand side(s) */		    k = 1;		    ii = mb * nb + 1;		    i__2 = nb - 1;		    for (jj = 0; jj <= i__2; ++jj) {			_starpu_dcopy_(&mb, &c__[is + (js + jj) * c_dim1], &c__1, &				rhs[k - 1], &c__1);			_starpu_dcopy_(&mb, &f[is + (js + jj) * f_dim1], &c__1, &rhs[				ii - 1], &c__1);			k += mb;			ii += mb;/* L80: */		    }/*                 Solve Z * x = RHS */		    _starpu_dgetc2_(&zdim, z__, &c__8, ipiv, jpiv, &ierr);		    if (ierr > 0) {			*info = ierr;		    }		    if (*ijob == 0) {			_starpu_dgesc2_(&zdim, z__, &c__8, rhs, ipiv, jpiv, &scaloc);			if (scaloc != 1.) {			    i__2 = *n;			    for (k = 1; k <= i__2; ++k) {				_starpu_dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &					c__1);				_starpu_dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);/* L90: */			    }			    *scale *= scaloc;			}		    } else {			_starpu_dlatdf_(ijob, &zdim, z__, &c__8, rhs, rdsum, rdscal, 				ipiv, jpiv);		    }/*                 Unpack solution vector(s) */		    k = 1;		    ii = mb * nb + 1;		    i__2 = nb - 1;		    for (jj = 0; jj <= i__2; ++jj) {			_starpu_dcopy_(&mb, &rhs[k - 1], &c__1, &c__[is + (js + jj) * 				c_dim1], &c__1);			_starpu_dcopy_(&mb, &rhs[ii - 1], &c__1, &f[is + (js + jj) * 				f_dim1], &c__1);			k += mb;			ii += mb;/* L100: */		    }/*                 Substitute R(I, J) and L(I, J) into remaining *//*                 equation. */		    if (i__ > 1) {			i__2 = is - 1;			_starpu_dgemm_("N", "N", &i__2, &nb, &mb, &c_b27, &a[is * 				a_dim1 + 1], lda, rhs, &mb, &c_b42, &c__[js * 				c_dim1 + 1], ldc);			i__2 = is - 1;			_starpu_dgemm_("N", "N", &i__2, &nb, &mb, &c_b27, &d__[is * 				d_dim1 + 1], ldd, rhs, &mb, &c_b42, &f[js * 				f_dim1 + 1], ldf);		    }		    if (j < q) {			k = mb * nb + 1;			i__2 = *n - je;			_starpu_dgemm_("N", "N", &mb, &i__2, &nb, &c_b42, &rhs[k - 1], 				 &mb, &b[js + (je + 1) * b_dim1], ldb, &c_b42, 				 &c__[is + (je + 1) * c_dim1], ldc);			i__2 = *n - je;			_starpu_dgemm_("N", "N", &mb, &i__2, &nb, &c_b42, &rhs[k - 1], 				 &mb, &e[js + (je + 1) * e_dim1], lde, &c_b42, 				 &f[is + (je + 1) * f_dim1], ldf);		    }		}/* L110: */	    }/* L120: */	}    } else {/*        Solve (I, J) - subsystem *//*             A(I, I)' * R(I, J) + D(I, I)' * L(J, J)  =  C(I, J) *//*             R(I, I)  * B(J, J) + L(I, J)  * E(J, J)  = -F(I, J) *//*        for I = 1, 2, ..., P, J = Q, Q - 1, ..., 1 */	*scale = 1.;	scaloc = 1.;	i__1 = p;	for (i__ = 1; i__ <= i__1; ++i__) {	    is = iwork[i__];	    isp1 = is + 1;	    ie = i__;	    mb = ie - is + 1;	    i__2 = p + 2;	    for (j = q; j >= i__2; --j) {		js = iwork[j];		jsp1 = js + 1;		je = iwork[j + 1] - 1;		nb = je - js + 1;		zdim = mb * nb << 1;		if (mb == 1 && nb == 1) {/*                 Build a 2-by-2 system Z' * x = RHS */		    z__[0] = a[is + is * a_dim1];		    z__[1] = -b[js + js * b_dim1];		    z__[8] = d__[is + is * d_dim1];		    z__[9] = -e[js + js * e_dim1];/*                 Set up right hand side(s) */		    rhs[0] = c__[is + js * c_dim1];		    rhs[1] = f[is + js * f_dim1];/*                 Solve Z' * x = RHS */		    _starpu_dgetc2_(&zdim, z__, &c__8, ipiv, jpiv, &ierr);		    if (ierr > 0) {			*info = ierr;		    }		    _starpu_dgesc2_(&zdim, z__, &c__8, rhs, ipiv, jpiv, &scaloc);		    if (scaloc != 1.) {			i__3 = *n;			for (k = 1; k <= i__3; ++k) {			    _starpu_dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);			    _starpu_dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);/* L130: */			}			*scale *= scaloc;		    }/*                 Unpack solution vector(s) */		    c__[is + js * c_dim1] = rhs[0];		    f[is + js * f_dim1] = rhs[1];/*                 Substitute R(I, J) and L(I, J) into remaining *//*                 equation. */		    if (j > p + 2) {			alpha = rhs[0];			i__3 = js - 1;			_starpu_daxpy_(&i__3, &alpha, &b[js * b_dim1 + 1], &c__1, &f[				is + f_dim1], ldf);			alpha = rhs[1];			i__3 = js - 1;			_starpu_daxpy_(&i__3, &alpha, &e[js * e_dim1 + 1], &c__1, &f[				is + f_dim1], ldf);		    }		    if (i__ < p) {			alpha = -rhs[0];			i__3 = *m - ie;			_starpu_daxpy_(&i__3, &alpha, &a[is + (ie + 1) * a_dim1], lda, 				 &c__[ie + 1 + js * c_dim1], &c__1);			alpha = -rhs[1];			i__3 = *m - ie;			_starpu_daxpy_(&i__3, &alpha, &d__[is + (ie + 1) * d_dim1], 				ldd, &c__[ie + 1 + js * c_dim1], &c__1);		    }		} else if (mb == 1 && nb == 2) {/*                 Build a 4-by-4 system Z' * x = RHS */		    z__[0] = a[is + is * a_dim1];		    z__[1] = 0.;		    z__[2] = -b[js + js * b_dim1];		    z__[3] = -b[jsp1 + js * b_dim1];		    z__[8] = 0.;		    z__[9] = a[is + is * a_dim1];		    z__[10] = -b[js + jsp1 * b_dim1];		    z__[11] = -b[jsp1 + jsp1 * b_dim1];		    z__[16] = d__[is + is * d_dim1];		    z__[17] = 0.;		    z__[18] = -e[js + js * e_dim1];		    z__[19] = 0.;		    z__[24] = 0.;		    z__[25] = d__[is + is * d_dim1];		    z__[26] = -e[js + jsp1 * e_dim1];		    z__[27] = -e[jsp1 + jsp1 * e_dim1];/*                 Set up right hand side(s) */		    rhs[0] = c__[is + js * c_dim1];		    rhs[1] = c__[is + jsp1 * c_dim1];		    rhs[2] = f[is + js * f_dim1];		    rhs[3] = f[is + jsp1 * f_dim1];/*                 Solve Z' * x = RHS */		    _starpu_dgetc2_(&zdim, z__, &c__8, ipiv, jpiv, &ierr);		    if (ierr > 0) {			*info = ierr;		    }		    _starpu_dgesc2_(&zdim, z__, &c__8, rhs, ipiv, jpiv, &scaloc);		    if (scaloc != 1.) {			i__3 = *n;			for (k = 1; k <= i__3; ++k) {			    _starpu_dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);			    _starpu_dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);/* L140: */			}			*scale *= scaloc;		    }/*                 Unpack solution vector(s) */		    c__[is + js * c_dim1] = rhs[0];		    c__[is + jsp1 * c_dim1] = rhs[1];		    f[is + js * f_dim1] = rhs[2];		    f[is + jsp1 * f_dim1] = rhs[3];/*                 Substitute R(I, J) and L(I, J) into remaining *//*                 equation. */		    if (j > p + 2) {			i__3 = js - 1;			_starpu_daxpy_(&i__3, rhs, &b[js * b_dim1 + 1], &c__1, &f[is 				+ f_dim1], ldf);			i__3 = js - 1;			_starpu_daxpy_(&i__3, &rhs[1], &b[jsp1 * b_dim1 + 1], &c__1, &				f[is + f_dim1], ldf);			i__3 = js - 1;			_starpu_daxpy_(&i__3, &rhs[2], &e[js * e_dim1 + 1], &c__1, &f[				is + f_dim1], ldf);			i__3 = js - 1;			_starpu_daxpy_(&i__3, &rhs[3], &e[jsp1 * e_dim1 + 1], &c__1, &				f[is + f_dim1], ldf);		    }		    if (i__ < p) {			i__3 = *m - ie;			_starpu_dger_(&i__3, &nb, &c_b27, &a[is + (ie + 1) * a_dim1], 				lda, rhs, &c__1, &c__[ie + 1 + js * c_dim1], 				ldc);			i__3 = *m - ie;			_starpu_dger_(&i__3, &nb, &c_b27, &d__[is + (ie + 1) * d_dim1], ldd, &rhs[2], &c__1, &c__[ie + 1 + js * 				c_dim1], ldc);		    }		} else if (mb == 2 && nb == 1) {/*                 Build a 4-by-4 system Z' * x = RHS */		    z__[0] = a[is + is * a_dim1];		    z__[1] = a[is + isp1 * a_dim1];		    z__[2] = -b[js + js * b_dim1];		    z__[3] = 0.;		    z__[8] = a[isp1 + is * a_dim1];		    z__[9] = a[isp1 + isp1 * a_dim1];		    z__[10] = 0.;		    z__[11] = -b[js + js * b_dim1];		    z__[16] = d__[is + is * d_dim1];		    z__[17] = d__[is + isp1 * d_dim1];		    z__[18] = -e[js + js * e_dim1];		    z__[19] = 0.;		    z__[24] = 0.;		    z__[25] = d__[isp1 + isp1 * d_dim1];		    z__[26] = 0.;		    z__[27] = -e[js + js * e_dim1];/*                 Set up right hand side(s) */		    rhs[0] = c__[is + js * c_dim1];		    rhs[1] = c__[isp1 + js * c_dim1];		    rhs[2] = f[is + js * f_dim1];		    rhs[3] = f[isp1 + js * f_dim1];/*                 Solve Z' * x = RHS */		    _starpu_dgetc2_(&zdim, z__, &c__8, ipiv, jpiv, &ierr);		    if (ierr > 0) {			*info = ierr;		    }		    _starpu_dgesc2_(&zdim, z__, &c__8, rhs, ipiv, jpiv, &scaloc);		    if (scaloc != 1.) {			i__3 = *n;			for (k = 1; k <= i__3; ++k) {			    _starpu_dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);			    _starpu_dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);/* L150: */			}			*scale *= scaloc;		    }/*                 Unpack solution vector(s) */		    c__[is + js * c_dim1] = rhs[0];		    c__[isp1 + js * c_dim1] = rhs[1];		    f[is + js * f_dim1] = rhs[2];		    f[isp1 + js * f_dim1] = rhs[3];/*                 Substitute R(I, J) and L(I, J) into remaining *//*                 equation. */		    if (j > p + 2) {			i__3 = js - 1;			_starpu_dger_(&mb, &i__3, &c_b42, rhs, &c__1, &b[js * b_dim1 				+ 1], &c__1, &f[is + f_dim1], ldf);			i__3 = js - 1;			_starpu_dger_(&mb, &i__3, &c_b42, &rhs[2], &c__1, &e[js * 				e_dim1 + 1], &c__1, &f[is + f_dim1], ldf);		    }		    if (i__ < p) {			i__3 = *m - ie;			_starpu_dgemv_("T", &mb, &i__3, &c_b27, &a[is + (ie + 1) * 				a_dim1], lda, rhs, &c__1, &c_b42, &c__[ie + 1 				+ js * c_dim1], &c__1);			i__3 = *m - ie;			_starpu_dgemv_("T", &mb, &i__3, &c_b27, &d__[is + (ie + 1) * 				d_dim1], ldd, &rhs[2], &c__1, &c_b42, &c__[ie 				+ 1 + js * c_dim1], &c__1);		    }		} else if (mb == 2 && nb == 2) {/*                 Build an 8-by-8 system Z' * x = RHS */		    _starpu_dlaset_("F", &c__8, &c__8, &c_b56, &c_b56, z__, &c__8);		    z__[0] = a[is + is * a_dim1];		    z__[1] = a[is + isp1 * a_dim1];		    z__[4] = -b[js + js * b_dim1];		    z__[6] = -b[jsp1 + js * b_dim1];		    z__[8] = a[isp1 + is * a_dim1];		    z__[9] = a[isp1 + isp1 * a_dim1];		    z__[13] = -b[js + js * b_dim1];		    z__[15] = -b[jsp1 + js * b_dim1];		    z__[18] = a[is + is * a_dim1];		    z__[19] = a[is + isp1 * a_dim1];		    z__[20] = -b[js + jsp1 * b_dim1];		    z__[22] = -b[jsp1 + jsp1 * b_dim1];		    z__[26] = a[isp1 + is * a_dim1];		    z__[27] = a[isp1 + isp1 * a_dim1];		    z__[29] = -b[js + jsp1 * b_dim1];		    z__[31] = -b[jsp1 + jsp1 * b_dim1];		    z__[32] = d__[is + is * d_dim1];		    z__[33] = d__[is + isp1 * d_dim1];		    z__[36] = -e[js + js * e_dim1];		    z__[41] = d__[isp1 + isp1 * d_dim1];		    z__[45] = -e[js + js * e_dim1];		    z__[50] = d__[is + is * d_dim1];		    z__[51] = d__[is + isp1 * d_dim1];		    z__[52] = -e[js + jsp1 * e_dim1];		    z__[54] = -e[jsp1 + jsp1 * e_dim1];		    z__[59] = d__[isp1 + isp1 * d_dim1];		    z__[61] = -e[js + jsp1 * e_dim1];		    z__[63] = -e[jsp1 + jsp1 * e_dim1];/*                 Set up right hand side(s) */		    k = 1;		    ii = mb * nb + 1;		    i__3 = nb - 1;		    for (jj = 0; jj <= i__3; ++jj) {			_starpu_dcopy_(&mb, &c__[is + (js + jj) * c_dim1], &c__1, &				rhs[k - 1], &c__1);			_starpu_dcopy_(&mb, &f[is + (js + jj) * f_dim1], &c__1, &rhs[				ii - 1], &c__1);			k += mb;			ii += mb;/* L160: */		    }/*                 Solve Z' * x = RHS */		    _starpu_dgetc2_(&zdim, z__, &c__8, ipiv, jpiv, &ierr);		    if (ierr > 0) {			*info = ierr;		    }		    _starpu_dgesc2_(&zdim, z__, &c__8, rhs, ipiv, jpiv, &scaloc);		    if (scaloc != 1.) {			i__3 = *n;			for (k = 1; k <= i__3; ++k) {			    _starpu_dscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);			    _starpu_dscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);/* L170: */			}			*scale *= scaloc;		    }/*                 Unpack solution vector(s) */		    k = 1;		    ii = mb * nb + 1;		    i__3 = nb - 1;		    for (jj = 0; jj <= i__3; ++jj) {			_starpu_dcopy_(&mb, &rhs[k - 1], &c__1, &c__[is + (js + jj) * 				c_dim1], &c__1);			_starpu_dcopy_(&mb, &rhs[ii - 1], &c__1, &f[is + (js + jj) * 				f_dim1], &c__1);			k += mb;			ii += mb;/* L180: */		    }/*                 Substitute R(I, J) and L(I, J) into remaining *//*                 equation. */		    if (j > p + 2) {			i__3 = js - 1;			_starpu_dgemm_("N", "T", &mb, &i__3, &nb, &c_b42, &c__[is + 				js * c_dim1], ldc, &b[js * b_dim1 + 1], ldb, &				c_b42, &f[is + f_dim1], ldf);			i__3 = js - 1;			_starpu_dgemm_("N", "T", &mb, &i__3, &nb, &c_b42, &f[is + js *				 f_dim1], ldf, &e[js * e_dim1 + 1], lde, &				c_b42, &f[is + f_dim1], ldf);		    }		    if (i__ < p) {			i__3 = *m - ie;			_starpu_dgemm_("T", "N", &i__3, &nb, &mb, &c_b27, &a[is + (ie 				+ 1) * a_dim1], lda, &c__[is + js * c_dim1], 				ldc, &c_b42, &c__[ie + 1 + js * c_dim1], ldc);			i__3 = *m - ie;			_starpu_dgemm_("T", "N", &i__3, &nb, &mb, &c_b27, &d__[is + (				ie + 1) * d_dim1], ldd, &f[is + js * f_dim1], 				ldf, &c_b42, &c__[ie + 1 + js * c_dim1], ldc);		    }		}/* L190: */	    }/* L200: */	}    }    return 0;/*     End of DTGSY2 */} /* _starpu_dtgsy2_ */
 |