| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125 | /* _starpu_dla_lin_berr.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int _starpu_dla_lin_berr__(integer *n, integer *nz, integer *nrhs, 	doublereal *res, doublereal *ayb, doublereal *berr){    /* System generated locals */    integer ayb_dim1, ayb_offset, res_dim1, res_offset, i__1, i__2;    doublereal d__1;    /* Local variables */    integer i__, j;    doublereal tmp, safe1;    extern doublereal _starpu_dlamch_(char *);/*     -- LAPACK routine (version 3.2.1)                                 -- *//*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- *//*     -- Jason Riedy of Univ. of California Berkeley.                 -- *//*     -- April 2009                                                   -- *//*     -- LAPACK is a software package provided by Univ. of Tennessee, -- *//*     -- Univ. of California Berkeley and NAG Ltd.                    -- *//*     .. *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*     DLA_LIN_BERR computes componentwise relative backward error from *//*     the formula *//*         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) ) *//*     where abs(Z) is the componentwise absolute value of the matrix *//*     or vector Z. *//*  Arguments *//*  ========== *//*     N       (input) INTEGER *//*     The number of linear equations, i.e., the order of the *//*     matrix A.  N >= 0. *//*     NZ      (input) INTEGER *//*     We add (NZ+1)*SLAMCH( 'Safe minimum' ) to R(i) in the numerator to *//*     guard against spuriously zero residuals. Default value is N. *//*     NRHS    (input) INTEGER *//*     The number of right hand sides, i.e., the number of columns *//*     of the matrices AYB, RES, and BERR.  NRHS >= 0. *//*     RES    (input) DOUBLE PRECISION array, dimension (N,NRHS) *//*     The residual matrix, i.e., the matrix R in the relative backward *//*     error formula above. *//*     AYB    (input) DOUBLE PRECISION array, dimension (N, NRHS) *//*     The denominator in the relative backward error formula above, i.e., *//*     the matrix abs(op(A_s))*abs(Y) + abs(B_s). The matrices A, Y, and B *//*     are from iterative refinement (see _starpu_dla_gerfsx_extended.f). *//*     RES    (output) DOUBLE PRECISION array, dimension (NRHS) *//*     The componentwise relative backward error from the formula above. *//*  ===================================================================== *//*     .. Local Scalars .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Adding SAFE1 to the numerator guards against spuriously zero *//*     residuals.  A similar safeguard is in the SLA_yyAMV routine used *//*     to compute AYB. */    /* Parameter adjustments */    --berr;    ayb_dim1 = *n;    ayb_offset = 1 + ayb_dim1;    ayb -= ayb_offset;    res_dim1 = *n;    res_offset = 1 + res_dim1;    res -= res_offset;    /* Function Body */    safe1 = _starpu_dlamch_("Safe minimum");    safe1 = (*nz + 1) * safe1;    i__1 = *nrhs;    for (j = 1; j <= i__1; ++j) {	berr[j] = 0.;	i__2 = *n;	for (i__ = 1; i__ <= i__2; ++i__) {	    if (ayb[i__ + j * ayb_dim1] != 0.) {		tmp = (safe1 + (d__1 = res[i__ + j * res_dim1], abs(d__1))) / 			ayb[i__ + j * ayb_dim1];/* Computing MAX */		d__1 = berr[j];		berr[j] = max(d__1,tmp);	    }/*     If AYB is exactly 0.0 (and if computed by SLA_yyAMV), then we know *//*     the true residual also must be exactly 0.0. */	}    }    return 0;} /* _starpu_dla_lin_berr__ */
 |