12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229 |
- /* dtrevc.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static logical c_false = FALSE_;
- static integer c__1 = 1;
- static doublereal c_b22 = 1.;
- static doublereal c_b25 = 0.;
- static integer c__2 = 2;
- static logical c_true = TRUE_;
- /* Subroutine */ int _starpu_dtrevc_(char *side, char *howmny, logical *select,
- integer *n, doublereal *t, integer *ldt, doublereal *vl, integer *
- ldvl, doublereal *vr, integer *ldvr, integer *mm, integer *m,
- doublereal *work, integer *info)
- {
- /* System generated locals */
- integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
- i__2, i__3;
- doublereal d__1, d__2, d__3, d__4;
- /* Builtin functions */
- double sqrt(doublereal);
- /* Local variables */
- integer i__, j, k;
- doublereal x[4] /* was [2][2] */;
- integer j1, j2, n2, ii, ki, ip, is;
- doublereal wi, wr, rec, ulp, beta, emax;
- logical pair;
- extern doublereal _starpu_ddot_(integer *, doublereal *, integer *, doublereal *,
- integer *);
- logical allv;
- integer ierr;
- doublereal unfl, ovfl, smin;
- logical over;
- doublereal vmax;
- integer jnxt;
- extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *,
- integer *);
- doublereal scale;
- extern logical _starpu_lsame_(char *, char *);
- extern /* Subroutine */ int _starpu_dgemv_(char *, integer *, integer *,
- doublereal *, doublereal *, integer *, doublereal *, integer *,
- doublereal *, doublereal *, integer *);
- doublereal remax;
- extern /* Subroutine */ int _starpu_dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- logical leftv, bothv;
- extern /* Subroutine */ int _starpu_daxpy_(integer *, doublereal *, doublereal *,
- integer *, doublereal *, integer *);
- doublereal vcrit;
- logical somev;
- doublereal xnorm;
- extern /* Subroutine */ int _starpu_dlaln2_(logical *, integer *, integer *,
- doublereal *, doublereal *, doublereal *, integer *, doublereal *,
- doublereal *, doublereal *, integer *, doublereal *, doublereal *
- , doublereal *, integer *, doublereal *, doublereal *, integer *),
- _starpu_dlabad_(doublereal *, doublereal *);
- extern doublereal _starpu_dlamch_(char *);
- extern integer _starpu_idamax_(integer *, doublereal *, integer *);
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- doublereal bignum;
- logical rightv;
- doublereal smlnum;
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DTREVC computes some or all of the right and/or left eigenvectors of */
- /* a real upper quasi-triangular matrix T. */
- /* Matrices of this type are produced by the Schur factorization of */
- /* a real general matrix: A = Q*T*Q**T, as computed by DHSEQR. */
- /* The right eigenvector x and the left eigenvector y of T corresponding */
- /* to an eigenvalue w are defined by: */
- /* T*x = w*x, (y**H)*T = w*(y**H) */
- /* where y**H denotes the conjugate transpose of y. */
- /* The eigenvalues are not input to this routine, but are read directly */
- /* from the diagonal blocks of T. */
- /* This routine returns the matrices X and/or Y of right and left */
- /* eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an */
- /* input matrix. If Q is the orthogonal factor that reduces a matrix */
- /* A to Schur form T, then Q*X and Q*Y are the matrices of right and */
- /* left eigenvectors of A. */
- /* Arguments */
- /* ========= */
- /* SIDE (input) CHARACTER*1 */
- /* = 'R': compute right eigenvectors only; */
- /* = 'L': compute left eigenvectors only; */
- /* = 'B': compute both right and left eigenvectors. */
- /* HOWMNY (input) CHARACTER*1 */
- /* = 'A': compute all right and/or left eigenvectors; */
- /* = 'B': compute all right and/or left eigenvectors, */
- /* backtransformed by the matrices in VR and/or VL; */
- /* = 'S': compute selected right and/or left eigenvectors, */
- /* as indicated by the logical array SELECT. */
- /* SELECT (input/output) LOGICAL array, dimension (N) */
- /* If HOWMNY = 'S', SELECT specifies the eigenvectors to be */
- /* computed. */
- /* If w(j) is a real eigenvalue, the corresponding real */
- /* eigenvector is computed if SELECT(j) is .TRUE.. */
- /* If w(j) and w(j+1) are the real and imaginary parts of a */
- /* complex eigenvalue, the corresponding complex eigenvector is */
- /* computed if either SELECT(j) or SELECT(j+1) is .TRUE., and */
- /* on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is set to */
- /* .FALSE.. */
- /* Not referenced if HOWMNY = 'A' or 'B'. */
- /* N (input) INTEGER */
- /* The order of the matrix T. N >= 0. */
- /* T (input) DOUBLE PRECISION array, dimension (LDT,N) */
- /* The upper quasi-triangular matrix T in Schur canonical form. */
- /* LDT (input) INTEGER */
- /* The leading dimension of the array T. LDT >= max(1,N). */
- /* VL (input/output) DOUBLE PRECISION array, dimension (LDVL,MM) */
- /* On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must */
- /* contain an N-by-N matrix Q (usually the orthogonal matrix Q */
- /* of Schur vectors returned by DHSEQR). */
- /* On exit, if SIDE = 'L' or 'B', VL contains: */
- /* if HOWMNY = 'A', the matrix Y of left eigenvectors of T; */
- /* if HOWMNY = 'B', the matrix Q*Y; */
- /* if HOWMNY = 'S', the left eigenvectors of T specified by */
- /* SELECT, stored consecutively in the columns */
- /* of VL, in the same order as their */
- /* eigenvalues. */
- /* A complex eigenvector corresponding to a complex eigenvalue */
- /* is stored in two consecutive columns, the first holding the */
- /* real part, and the second the imaginary part. */
- /* Not referenced if SIDE = 'R'. */
- /* LDVL (input) INTEGER */
- /* The leading dimension of the array VL. LDVL >= 1, and if */
- /* SIDE = 'L' or 'B', LDVL >= N. */
- /* VR (input/output) DOUBLE PRECISION array, dimension (LDVR,MM) */
- /* On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must */
- /* contain an N-by-N matrix Q (usually the orthogonal matrix Q */
- /* of Schur vectors returned by DHSEQR). */
- /* On exit, if SIDE = 'R' or 'B', VR contains: */
- /* if HOWMNY = 'A', the matrix X of right eigenvectors of T; */
- /* if HOWMNY = 'B', the matrix Q*X; */
- /* if HOWMNY = 'S', the right eigenvectors of T specified by */
- /* SELECT, stored consecutively in the columns */
- /* of VR, in the same order as their */
- /* eigenvalues. */
- /* A complex eigenvector corresponding to a complex eigenvalue */
- /* is stored in two consecutive columns, the first holding the */
- /* real part and the second the imaginary part. */
- /* Not referenced if SIDE = 'L'. */
- /* LDVR (input) INTEGER */
- /* The leading dimension of the array VR. LDVR >= 1, and if */
- /* SIDE = 'R' or 'B', LDVR >= N. */
- /* MM (input) INTEGER */
- /* The number of columns in the arrays VL and/or VR. MM >= M. */
- /* M (output) INTEGER */
- /* The number of columns in the arrays VL and/or VR actually */
- /* used to store the eigenvectors. */
- /* If HOWMNY = 'A' or 'B', M is set to N. */
- /* Each selected real eigenvector occupies one column and each */
- /* selected complex eigenvector occupies two columns. */
- /* WORK (workspace) DOUBLE PRECISION array, dimension (3*N) */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* Further Details */
- /* =============== */
- /* The algorithm used in this program is basically backward (forward) */
- /* substitution, with scaling to make the the code robust against */
- /* possible overflow. */
- /* Each eigenvector is normalized so that the element of largest */
- /* magnitude has magnitude 1; here the magnitude of a complex number */
- /* (x,y) is taken to be |x| + |y|. */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. Local Arrays .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Decode and test the input parameters */
- /* Parameter adjustments */
- --select;
- t_dim1 = *ldt;
- t_offset = 1 + t_dim1;
- t -= t_offset;
- vl_dim1 = *ldvl;
- vl_offset = 1 + vl_dim1;
- vl -= vl_offset;
- vr_dim1 = *ldvr;
- vr_offset = 1 + vr_dim1;
- vr -= vr_offset;
- --work;
- /* Function Body */
- bothv = _starpu_lsame_(side, "B");
- rightv = _starpu_lsame_(side, "R") || bothv;
- leftv = _starpu_lsame_(side, "L") || bothv;
- allv = _starpu_lsame_(howmny, "A");
- over = _starpu_lsame_(howmny, "B");
- somev = _starpu_lsame_(howmny, "S");
- *info = 0;
- if (! rightv && ! leftv) {
- *info = -1;
- } else if (! allv && ! over && ! somev) {
- *info = -2;
- } else if (*n < 0) {
- *info = -4;
- } else if (*ldt < max(1,*n)) {
- *info = -6;
- } else if (*ldvl < 1 || leftv && *ldvl < *n) {
- *info = -8;
- } else if (*ldvr < 1 || rightv && *ldvr < *n) {
- *info = -10;
- } else {
- /* Set M to the number of columns required to store the selected */
- /* eigenvectors, standardize the array SELECT if necessary, and */
- /* test MM. */
- if (somev) {
- *m = 0;
- pair = FALSE_;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (pair) {
- pair = FALSE_;
- select[j] = FALSE_;
- } else {
- if (j < *n) {
- if (t[j + 1 + j * t_dim1] == 0.) {
- if (select[j]) {
- ++(*m);
- }
- } else {
- pair = TRUE_;
- if (select[j] || select[j + 1]) {
- select[j] = TRUE_;
- *m += 2;
- }
- }
- } else {
- if (select[*n]) {
- ++(*m);
- }
- }
- }
- /* L10: */
- }
- } else {
- *m = *n;
- }
- if (*mm < *m) {
- *info = -11;
- }
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DTREVC", &i__1);
- return 0;
- }
- /* Quick return if possible. */
- if (*n == 0) {
- return 0;
- }
- /* Set the constants to control overflow. */
- unfl = _starpu_dlamch_("Safe minimum");
- ovfl = 1. / unfl;
- _starpu_dlabad_(&unfl, &ovfl);
- ulp = _starpu_dlamch_("Precision");
- smlnum = unfl * (*n / ulp);
- bignum = (1. - ulp) / smlnum;
- /* Compute 1-norm of each column of strictly upper triangular */
- /* part of T to control overflow in triangular solver. */
- work[1] = 0.;
- i__1 = *n;
- for (j = 2; j <= i__1; ++j) {
- work[j] = 0.;
- i__2 = j - 1;
- for (i__ = 1; i__ <= i__2; ++i__) {
- work[j] += (d__1 = t[i__ + j * t_dim1], abs(d__1));
- /* L20: */
- }
- /* L30: */
- }
- /* Index IP is used to specify the real or complex eigenvalue: */
- /* IP = 0, real eigenvalue, */
- /* 1, first of conjugate complex pair: (wr,wi) */
- /* -1, second of conjugate complex pair: (wr,wi) */
- n2 = *n << 1;
- if (rightv) {
- /* Compute right eigenvectors. */
- ip = 0;
- is = *m;
- for (ki = *n; ki >= 1; --ki) {
- if (ip == 1) {
- goto L130;
- }
- if (ki == 1) {
- goto L40;
- }
- if (t[ki + (ki - 1) * t_dim1] == 0.) {
- goto L40;
- }
- ip = -1;
- L40:
- if (somev) {
- if (ip == 0) {
- if (! select[ki]) {
- goto L130;
- }
- } else {
- if (! select[ki - 1]) {
- goto L130;
- }
- }
- }
- /* Compute the KI-th eigenvalue (WR,WI). */
- wr = t[ki + ki * t_dim1];
- wi = 0.;
- if (ip != 0) {
- wi = sqrt((d__1 = t[ki + (ki - 1) * t_dim1], abs(d__1))) *
- sqrt((d__2 = t[ki - 1 + ki * t_dim1], abs(d__2)));
- }
- /* Computing MAX */
- d__1 = ulp * (abs(wr) + abs(wi));
- smin = max(d__1,smlnum);
- if (ip == 0) {
- /* Real right eigenvector */
- work[ki + *n] = 1.;
- /* Form right-hand side */
- i__1 = ki - 1;
- for (k = 1; k <= i__1; ++k) {
- work[k + *n] = -t[k + ki * t_dim1];
- /* L50: */
- }
- /* Solve the upper quasi-triangular system: */
- /* (T(1:KI-1,1:KI-1) - WR)*X = SCALE*WORK. */
- jnxt = ki - 1;
- for (j = ki - 1; j >= 1; --j) {
- if (j > jnxt) {
- goto L60;
- }
- j1 = j;
- j2 = j;
- jnxt = j - 1;
- if (j > 1) {
- if (t[j + (j - 1) * t_dim1] != 0.) {
- j1 = j - 1;
- jnxt = j - 2;
- }
- }
- if (j1 == j2) {
- /* 1-by-1 diagonal block */
- _starpu_dlaln2_(&c_false, &c__1, &c__1, &smin, &c_b22, &t[j +
- j * t_dim1], ldt, &c_b22, &c_b22, &work[j + *
- n], n, &wr, &c_b25, x, &c__2, &scale, &xnorm,
- &ierr);
- /* Scale X(1,1) to avoid overflow when updating */
- /* the right-hand side. */
- if (xnorm > 1.) {
- if (work[j] > bignum / xnorm) {
- x[0] /= xnorm;
- scale /= xnorm;
- }
- }
- /* Scale if necessary */
- if (scale != 1.) {
- _starpu_dscal_(&ki, &scale, &work[*n + 1], &c__1);
- }
- work[j + *n] = x[0];
- /* Update right-hand side */
- i__1 = j - 1;
- d__1 = -x[0];
- _starpu_daxpy_(&i__1, &d__1, &t[j * t_dim1 + 1], &c__1, &work[
- *n + 1], &c__1);
- } else {
- /* 2-by-2 diagonal block */
- _starpu_dlaln2_(&c_false, &c__2, &c__1, &smin, &c_b22, &t[j -
- 1 + (j - 1) * t_dim1], ldt, &c_b22, &c_b22, &
- work[j - 1 + *n], n, &wr, &c_b25, x, &c__2, &
- scale, &xnorm, &ierr);
- /* Scale X(1,1) and X(2,1) to avoid overflow when */
- /* updating the right-hand side. */
- if (xnorm > 1.) {
- /* Computing MAX */
- d__1 = work[j - 1], d__2 = work[j];
- beta = max(d__1,d__2);
- if (beta > bignum / xnorm) {
- x[0] /= xnorm;
- x[1] /= xnorm;
- scale /= xnorm;
- }
- }
- /* Scale if necessary */
- if (scale != 1.) {
- _starpu_dscal_(&ki, &scale, &work[*n + 1], &c__1);
- }
- work[j - 1 + *n] = x[0];
- work[j + *n] = x[1];
- /* Update right-hand side */
- i__1 = j - 2;
- d__1 = -x[0];
- _starpu_daxpy_(&i__1, &d__1, &t[(j - 1) * t_dim1 + 1], &c__1,
- &work[*n + 1], &c__1);
- i__1 = j - 2;
- d__1 = -x[1];
- _starpu_daxpy_(&i__1, &d__1, &t[j * t_dim1 + 1], &c__1, &work[
- *n + 1], &c__1);
- }
- L60:
- ;
- }
- /* Copy the vector x or Q*x to VR and normalize. */
- if (! over) {
- _starpu_dcopy_(&ki, &work[*n + 1], &c__1, &vr[is * vr_dim1 + 1], &
- c__1);
- ii = _starpu_idamax_(&ki, &vr[is * vr_dim1 + 1], &c__1);
- remax = 1. / (d__1 = vr[ii + is * vr_dim1], abs(d__1));
- _starpu_dscal_(&ki, &remax, &vr[is * vr_dim1 + 1], &c__1);
- i__1 = *n;
- for (k = ki + 1; k <= i__1; ++k) {
- vr[k + is * vr_dim1] = 0.;
- /* L70: */
- }
- } else {
- if (ki > 1) {
- i__1 = ki - 1;
- _starpu_dgemv_("N", n, &i__1, &c_b22, &vr[vr_offset], ldvr, &
- work[*n + 1], &c__1, &work[ki + *n], &vr[ki *
- vr_dim1 + 1], &c__1);
- }
- ii = _starpu_idamax_(n, &vr[ki * vr_dim1 + 1], &c__1);
- remax = 1. / (d__1 = vr[ii + ki * vr_dim1], abs(d__1));
- _starpu_dscal_(n, &remax, &vr[ki * vr_dim1 + 1], &c__1);
- }
- } else {
- /* Complex right eigenvector. */
- /* Initial solve */
- /* [ (T(KI-1,KI-1) T(KI-1,KI) ) - (WR + I* WI)]*X = 0. */
- /* [ (T(KI,KI-1) T(KI,KI) ) ] */
- if ((d__1 = t[ki - 1 + ki * t_dim1], abs(d__1)) >= (d__2 = t[
- ki + (ki - 1) * t_dim1], abs(d__2))) {
- work[ki - 1 + *n] = 1.;
- work[ki + n2] = wi / t[ki - 1 + ki * t_dim1];
- } else {
- work[ki - 1 + *n] = -wi / t[ki + (ki - 1) * t_dim1];
- work[ki + n2] = 1.;
- }
- work[ki + *n] = 0.;
- work[ki - 1 + n2] = 0.;
- /* Form right-hand side */
- i__1 = ki - 2;
- for (k = 1; k <= i__1; ++k) {
- work[k + *n] = -work[ki - 1 + *n] * t[k + (ki - 1) *
- t_dim1];
- work[k + n2] = -work[ki + n2] * t[k + ki * t_dim1];
- /* L80: */
- }
- /* Solve upper quasi-triangular system: */
- /* (T(1:KI-2,1:KI-2) - (WR+i*WI))*X = SCALE*(WORK+i*WORK2) */
- jnxt = ki - 2;
- for (j = ki - 2; j >= 1; --j) {
- if (j > jnxt) {
- goto L90;
- }
- j1 = j;
- j2 = j;
- jnxt = j - 1;
- if (j > 1) {
- if (t[j + (j - 1) * t_dim1] != 0.) {
- j1 = j - 1;
- jnxt = j - 2;
- }
- }
- if (j1 == j2) {
- /* 1-by-1 diagonal block */
- _starpu_dlaln2_(&c_false, &c__1, &c__2, &smin, &c_b22, &t[j +
- j * t_dim1], ldt, &c_b22, &c_b22, &work[j + *
- n], n, &wr, &wi, x, &c__2, &scale, &xnorm, &
- ierr);
- /* Scale X(1,1) and X(1,2) to avoid overflow when */
- /* updating the right-hand side. */
- if (xnorm > 1.) {
- if (work[j] > bignum / xnorm) {
- x[0] /= xnorm;
- x[2] /= xnorm;
- scale /= xnorm;
- }
- }
- /* Scale if necessary */
- if (scale != 1.) {
- _starpu_dscal_(&ki, &scale, &work[*n + 1], &c__1);
- _starpu_dscal_(&ki, &scale, &work[n2 + 1], &c__1);
- }
- work[j + *n] = x[0];
- work[j + n2] = x[2];
- /* Update the right-hand side */
- i__1 = j - 1;
- d__1 = -x[0];
- _starpu_daxpy_(&i__1, &d__1, &t[j * t_dim1 + 1], &c__1, &work[
- *n + 1], &c__1);
- i__1 = j - 1;
- d__1 = -x[2];
- _starpu_daxpy_(&i__1, &d__1, &t[j * t_dim1 + 1], &c__1, &work[
- n2 + 1], &c__1);
- } else {
- /* 2-by-2 diagonal block */
- _starpu_dlaln2_(&c_false, &c__2, &c__2, &smin, &c_b22, &t[j -
- 1 + (j - 1) * t_dim1], ldt, &c_b22, &c_b22, &
- work[j - 1 + *n], n, &wr, &wi, x, &c__2, &
- scale, &xnorm, &ierr);
- /* Scale X to avoid overflow when updating */
- /* the right-hand side. */
- if (xnorm > 1.) {
- /* Computing MAX */
- d__1 = work[j - 1], d__2 = work[j];
- beta = max(d__1,d__2);
- if (beta > bignum / xnorm) {
- rec = 1. / xnorm;
- x[0] *= rec;
- x[2] *= rec;
- x[1] *= rec;
- x[3] *= rec;
- scale *= rec;
- }
- }
- /* Scale if necessary */
- if (scale != 1.) {
- _starpu_dscal_(&ki, &scale, &work[*n + 1], &c__1);
- _starpu_dscal_(&ki, &scale, &work[n2 + 1], &c__1);
- }
- work[j - 1 + *n] = x[0];
- work[j + *n] = x[1];
- work[j - 1 + n2] = x[2];
- work[j + n2] = x[3];
- /* Update the right-hand side */
- i__1 = j - 2;
- d__1 = -x[0];
- _starpu_daxpy_(&i__1, &d__1, &t[(j - 1) * t_dim1 + 1], &c__1,
- &work[*n + 1], &c__1);
- i__1 = j - 2;
- d__1 = -x[1];
- _starpu_daxpy_(&i__1, &d__1, &t[j * t_dim1 + 1], &c__1, &work[
- *n + 1], &c__1);
- i__1 = j - 2;
- d__1 = -x[2];
- _starpu_daxpy_(&i__1, &d__1, &t[(j - 1) * t_dim1 + 1], &c__1,
- &work[n2 + 1], &c__1);
- i__1 = j - 2;
- d__1 = -x[3];
- _starpu_daxpy_(&i__1, &d__1, &t[j * t_dim1 + 1], &c__1, &work[
- n2 + 1], &c__1);
- }
- L90:
- ;
- }
- /* Copy the vector x or Q*x to VR and normalize. */
- if (! over) {
- _starpu_dcopy_(&ki, &work[*n + 1], &c__1, &vr[(is - 1) * vr_dim1
- + 1], &c__1);
- _starpu_dcopy_(&ki, &work[n2 + 1], &c__1, &vr[is * vr_dim1 + 1], &
- c__1);
- emax = 0.;
- i__1 = ki;
- for (k = 1; k <= i__1; ++k) {
- /* Computing MAX */
- d__3 = emax, d__4 = (d__1 = vr[k + (is - 1) * vr_dim1]
- , abs(d__1)) + (d__2 = vr[k + is * vr_dim1],
- abs(d__2));
- emax = max(d__3,d__4);
- /* L100: */
- }
- remax = 1. / emax;
- _starpu_dscal_(&ki, &remax, &vr[(is - 1) * vr_dim1 + 1], &c__1);
- _starpu_dscal_(&ki, &remax, &vr[is * vr_dim1 + 1], &c__1);
- i__1 = *n;
- for (k = ki + 1; k <= i__1; ++k) {
- vr[k + (is - 1) * vr_dim1] = 0.;
- vr[k + is * vr_dim1] = 0.;
- /* L110: */
- }
- } else {
- if (ki > 2) {
- i__1 = ki - 2;
- _starpu_dgemv_("N", n, &i__1, &c_b22, &vr[vr_offset], ldvr, &
- work[*n + 1], &c__1, &work[ki - 1 + *n], &vr[(
- ki - 1) * vr_dim1 + 1], &c__1);
- i__1 = ki - 2;
- _starpu_dgemv_("N", n, &i__1, &c_b22, &vr[vr_offset], ldvr, &
- work[n2 + 1], &c__1, &work[ki + n2], &vr[ki *
- vr_dim1 + 1], &c__1);
- } else {
- _starpu_dscal_(n, &work[ki - 1 + *n], &vr[(ki - 1) * vr_dim1
- + 1], &c__1);
- _starpu_dscal_(n, &work[ki + n2], &vr[ki * vr_dim1 + 1], &
- c__1);
- }
- emax = 0.;
- i__1 = *n;
- for (k = 1; k <= i__1; ++k) {
- /* Computing MAX */
- d__3 = emax, d__4 = (d__1 = vr[k + (ki - 1) * vr_dim1]
- , abs(d__1)) + (d__2 = vr[k + ki * vr_dim1],
- abs(d__2));
- emax = max(d__3,d__4);
- /* L120: */
- }
- remax = 1. / emax;
- _starpu_dscal_(n, &remax, &vr[(ki - 1) * vr_dim1 + 1], &c__1);
- _starpu_dscal_(n, &remax, &vr[ki * vr_dim1 + 1], &c__1);
- }
- }
- --is;
- if (ip != 0) {
- --is;
- }
- L130:
- if (ip == 1) {
- ip = 0;
- }
- if (ip == -1) {
- ip = 1;
- }
- /* L140: */
- }
- }
- if (leftv) {
- /* Compute left eigenvectors. */
- ip = 0;
- is = 1;
- i__1 = *n;
- for (ki = 1; ki <= i__1; ++ki) {
- if (ip == -1) {
- goto L250;
- }
- if (ki == *n) {
- goto L150;
- }
- if (t[ki + 1 + ki * t_dim1] == 0.) {
- goto L150;
- }
- ip = 1;
- L150:
- if (somev) {
- if (! select[ki]) {
- goto L250;
- }
- }
- /* Compute the KI-th eigenvalue (WR,WI). */
- wr = t[ki + ki * t_dim1];
- wi = 0.;
- if (ip != 0) {
- wi = sqrt((d__1 = t[ki + (ki + 1) * t_dim1], abs(d__1))) *
- sqrt((d__2 = t[ki + 1 + ki * t_dim1], abs(d__2)));
- }
- /* Computing MAX */
- d__1 = ulp * (abs(wr) + abs(wi));
- smin = max(d__1,smlnum);
- if (ip == 0) {
- /* Real left eigenvector. */
- work[ki + *n] = 1.;
- /* Form right-hand side */
- i__2 = *n;
- for (k = ki + 1; k <= i__2; ++k) {
- work[k + *n] = -t[ki + k * t_dim1];
- /* L160: */
- }
- /* Solve the quasi-triangular system: */
- /* (T(KI+1:N,KI+1:N) - WR)'*X = SCALE*WORK */
- vmax = 1.;
- vcrit = bignum;
- jnxt = ki + 1;
- i__2 = *n;
- for (j = ki + 1; j <= i__2; ++j) {
- if (j < jnxt) {
- goto L170;
- }
- j1 = j;
- j2 = j;
- jnxt = j + 1;
- if (j < *n) {
- if (t[j + 1 + j * t_dim1] != 0.) {
- j2 = j + 1;
- jnxt = j + 2;
- }
- }
- if (j1 == j2) {
- /* 1-by-1 diagonal block */
- /* Scale if necessary to avoid overflow when forming */
- /* the right-hand side. */
- if (work[j] > vcrit) {
- rec = 1. / vmax;
- i__3 = *n - ki + 1;
- _starpu_dscal_(&i__3, &rec, &work[ki + *n], &c__1);
- vmax = 1.;
- vcrit = bignum;
- }
- i__3 = j - ki - 1;
- work[j + *n] -= _starpu_ddot_(&i__3, &t[ki + 1 + j * t_dim1],
- &c__1, &work[ki + 1 + *n], &c__1);
- /* Solve (T(J,J)-WR)'*X = WORK */
- _starpu_dlaln2_(&c_false, &c__1, &c__1, &smin, &c_b22, &t[j +
- j * t_dim1], ldt, &c_b22, &c_b22, &work[j + *
- n], n, &wr, &c_b25, x, &c__2, &scale, &xnorm,
- &ierr);
- /* Scale if necessary */
- if (scale != 1.) {
- i__3 = *n - ki + 1;
- _starpu_dscal_(&i__3, &scale, &work[ki + *n], &c__1);
- }
- work[j + *n] = x[0];
- /* Computing MAX */
- d__2 = (d__1 = work[j + *n], abs(d__1));
- vmax = max(d__2,vmax);
- vcrit = bignum / vmax;
- } else {
- /* 2-by-2 diagonal block */
- /* Scale if necessary to avoid overflow when forming */
- /* the right-hand side. */
- /* Computing MAX */
- d__1 = work[j], d__2 = work[j + 1];
- beta = max(d__1,d__2);
- if (beta > vcrit) {
- rec = 1. / vmax;
- i__3 = *n - ki + 1;
- _starpu_dscal_(&i__3, &rec, &work[ki + *n], &c__1);
- vmax = 1.;
- vcrit = bignum;
- }
- i__3 = j - ki - 1;
- work[j + *n] -= _starpu_ddot_(&i__3, &t[ki + 1 + j * t_dim1],
- &c__1, &work[ki + 1 + *n], &c__1);
- i__3 = j - ki - 1;
- work[j + 1 + *n] -= _starpu_ddot_(&i__3, &t[ki + 1 + (j + 1) *
- t_dim1], &c__1, &work[ki + 1 + *n], &c__1);
- /* Solve */
- /* [T(J,J)-WR T(J,J+1) ]'* X = SCALE*( WORK1 ) */
- /* [T(J+1,J) T(J+1,J+1)-WR] ( WORK2 ) */
- _starpu_dlaln2_(&c_true, &c__2, &c__1, &smin, &c_b22, &t[j +
- j * t_dim1], ldt, &c_b22, &c_b22, &work[j + *
- n], n, &wr, &c_b25, x, &c__2, &scale, &xnorm,
- &ierr);
- /* Scale if necessary */
- if (scale != 1.) {
- i__3 = *n - ki + 1;
- _starpu_dscal_(&i__3, &scale, &work[ki + *n], &c__1);
- }
- work[j + *n] = x[0];
- work[j + 1 + *n] = x[1];
- /* Computing MAX */
- d__3 = (d__1 = work[j + *n], abs(d__1)), d__4 = (d__2
- = work[j + 1 + *n], abs(d__2)), d__3 = max(
- d__3,d__4);
- vmax = max(d__3,vmax);
- vcrit = bignum / vmax;
- }
- L170:
- ;
- }
- /* Copy the vector x or Q*x to VL and normalize. */
- if (! over) {
- i__2 = *n - ki + 1;
- _starpu_dcopy_(&i__2, &work[ki + *n], &c__1, &vl[ki + is *
- vl_dim1], &c__1);
- i__2 = *n - ki + 1;
- ii = _starpu_idamax_(&i__2, &vl[ki + is * vl_dim1], &c__1) + ki -
- 1;
- remax = 1. / (d__1 = vl[ii + is * vl_dim1], abs(d__1));
- i__2 = *n - ki + 1;
- _starpu_dscal_(&i__2, &remax, &vl[ki + is * vl_dim1], &c__1);
- i__2 = ki - 1;
- for (k = 1; k <= i__2; ++k) {
- vl[k + is * vl_dim1] = 0.;
- /* L180: */
- }
- } else {
- if (ki < *n) {
- i__2 = *n - ki;
- _starpu_dgemv_("N", n, &i__2, &c_b22, &vl[(ki + 1) * vl_dim1
- + 1], ldvl, &work[ki + 1 + *n], &c__1, &work[
- ki + *n], &vl[ki * vl_dim1 + 1], &c__1);
- }
- ii = _starpu_idamax_(n, &vl[ki * vl_dim1 + 1], &c__1);
- remax = 1. / (d__1 = vl[ii + ki * vl_dim1], abs(d__1));
- _starpu_dscal_(n, &remax, &vl[ki * vl_dim1 + 1], &c__1);
- }
- } else {
- /* Complex left eigenvector. */
- /* Initial solve: */
- /* ((T(KI,KI) T(KI,KI+1) )' - (WR - I* WI))*X = 0. */
- /* ((T(KI+1,KI) T(KI+1,KI+1)) ) */
- if ((d__1 = t[ki + (ki + 1) * t_dim1], abs(d__1)) >= (d__2 =
- t[ki + 1 + ki * t_dim1], abs(d__2))) {
- work[ki + *n] = wi / t[ki + (ki + 1) * t_dim1];
- work[ki + 1 + n2] = 1.;
- } else {
- work[ki + *n] = 1.;
- work[ki + 1 + n2] = -wi / t[ki + 1 + ki * t_dim1];
- }
- work[ki + 1 + *n] = 0.;
- work[ki + n2] = 0.;
- /* Form right-hand side */
- i__2 = *n;
- for (k = ki + 2; k <= i__2; ++k) {
- work[k + *n] = -work[ki + *n] * t[ki + k * t_dim1];
- work[k + n2] = -work[ki + 1 + n2] * t[ki + 1 + k * t_dim1]
- ;
- /* L190: */
- }
- /* Solve complex quasi-triangular system: */
- /* ( T(KI+2,N:KI+2,N) - (WR-i*WI) )*X = WORK1+i*WORK2 */
- vmax = 1.;
- vcrit = bignum;
- jnxt = ki + 2;
- i__2 = *n;
- for (j = ki + 2; j <= i__2; ++j) {
- if (j < jnxt) {
- goto L200;
- }
- j1 = j;
- j2 = j;
- jnxt = j + 1;
- if (j < *n) {
- if (t[j + 1 + j * t_dim1] != 0.) {
- j2 = j + 1;
- jnxt = j + 2;
- }
- }
- if (j1 == j2) {
- /* 1-by-1 diagonal block */
- /* Scale if necessary to avoid overflow when */
- /* forming the right-hand side elements. */
- if (work[j] > vcrit) {
- rec = 1. / vmax;
- i__3 = *n - ki + 1;
- _starpu_dscal_(&i__3, &rec, &work[ki + *n], &c__1);
- i__3 = *n - ki + 1;
- _starpu_dscal_(&i__3, &rec, &work[ki + n2], &c__1);
- vmax = 1.;
- vcrit = bignum;
- }
- i__3 = j - ki - 2;
- work[j + *n] -= _starpu_ddot_(&i__3, &t[ki + 2 + j * t_dim1],
- &c__1, &work[ki + 2 + *n], &c__1);
- i__3 = j - ki - 2;
- work[j + n2] -= _starpu_ddot_(&i__3, &t[ki + 2 + j * t_dim1],
- &c__1, &work[ki + 2 + n2], &c__1);
- /* Solve (T(J,J)-(WR-i*WI))*(X11+i*X12)= WK+I*WK2 */
- d__1 = -wi;
- _starpu_dlaln2_(&c_false, &c__1, &c__2, &smin, &c_b22, &t[j +
- j * t_dim1], ldt, &c_b22, &c_b22, &work[j + *
- n], n, &wr, &d__1, x, &c__2, &scale, &xnorm, &
- ierr);
- /* Scale if necessary */
- if (scale != 1.) {
- i__3 = *n - ki + 1;
- _starpu_dscal_(&i__3, &scale, &work[ki + *n], &c__1);
- i__3 = *n - ki + 1;
- _starpu_dscal_(&i__3, &scale, &work[ki + n2], &c__1);
- }
- work[j + *n] = x[0];
- work[j + n2] = x[2];
- /* Computing MAX */
- d__3 = (d__1 = work[j + *n], abs(d__1)), d__4 = (d__2
- = work[j + n2], abs(d__2)), d__3 = max(d__3,
- d__4);
- vmax = max(d__3,vmax);
- vcrit = bignum / vmax;
- } else {
- /* 2-by-2 diagonal block */
- /* Scale if necessary to avoid overflow when forming */
- /* the right-hand side elements. */
- /* Computing MAX */
- d__1 = work[j], d__2 = work[j + 1];
- beta = max(d__1,d__2);
- if (beta > vcrit) {
- rec = 1. / vmax;
- i__3 = *n - ki + 1;
- _starpu_dscal_(&i__3, &rec, &work[ki + *n], &c__1);
- i__3 = *n - ki + 1;
- _starpu_dscal_(&i__3, &rec, &work[ki + n2], &c__1);
- vmax = 1.;
- vcrit = bignum;
- }
- i__3 = j - ki - 2;
- work[j + *n] -= _starpu_ddot_(&i__3, &t[ki + 2 + j * t_dim1],
- &c__1, &work[ki + 2 + *n], &c__1);
- i__3 = j - ki - 2;
- work[j + n2] -= _starpu_ddot_(&i__3, &t[ki + 2 + j * t_dim1],
- &c__1, &work[ki + 2 + n2], &c__1);
- i__3 = j - ki - 2;
- work[j + 1 + *n] -= _starpu_ddot_(&i__3, &t[ki + 2 + (j + 1) *
- t_dim1], &c__1, &work[ki + 2 + *n], &c__1);
- i__3 = j - ki - 2;
- work[j + 1 + n2] -= _starpu_ddot_(&i__3, &t[ki + 2 + (j + 1) *
- t_dim1], &c__1, &work[ki + 2 + n2], &c__1);
- /* Solve 2-by-2 complex linear equation */
- /* ([T(j,j) T(j,j+1) ]'-(wr-i*wi)*I)*X = SCALE*B */
- /* ([T(j+1,j) T(j+1,j+1)] ) */
- d__1 = -wi;
- _starpu_dlaln2_(&c_true, &c__2, &c__2, &smin, &c_b22, &t[j +
- j * t_dim1], ldt, &c_b22, &c_b22, &work[j + *
- n], n, &wr, &d__1, x, &c__2, &scale, &xnorm, &
- ierr);
- /* Scale if necessary */
- if (scale != 1.) {
- i__3 = *n - ki + 1;
- _starpu_dscal_(&i__3, &scale, &work[ki + *n], &c__1);
- i__3 = *n - ki + 1;
- _starpu_dscal_(&i__3, &scale, &work[ki + n2], &c__1);
- }
- work[j + *n] = x[0];
- work[j + n2] = x[2];
- work[j + 1 + *n] = x[1];
- work[j + 1 + n2] = x[3];
- /* Computing MAX */
- d__1 = abs(x[0]), d__2 = abs(x[2]), d__1 = max(d__1,
- d__2), d__2 = abs(x[1]), d__1 = max(d__1,d__2)
- , d__2 = abs(x[3]), d__1 = max(d__1,d__2);
- vmax = max(d__1,vmax);
- vcrit = bignum / vmax;
- }
- L200:
- ;
- }
- /* Copy the vector x or Q*x to VL and normalize. */
- if (! over) {
- i__2 = *n - ki + 1;
- _starpu_dcopy_(&i__2, &work[ki + *n], &c__1, &vl[ki + is *
- vl_dim1], &c__1);
- i__2 = *n - ki + 1;
- _starpu_dcopy_(&i__2, &work[ki + n2], &c__1, &vl[ki + (is + 1) *
- vl_dim1], &c__1);
- emax = 0.;
- i__2 = *n;
- for (k = ki; k <= i__2; ++k) {
- /* Computing MAX */
- d__3 = emax, d__4 = (d__1 = vl[k + is * vl_dim1], abs(
- d__1)) + (d__2 = vl[k + (is + 1) * vl_dim1],
- abs(d__2));
- emax = max(d__3,d__4);
- /* L220: */
- }
- remax = 1. / emax;
- i__2 = *n - ki + 1;
- _starpu_dscal_(&i__2, &remax, &vl[ki + is * vl_dim1], &c__1);
- i__2 = *n - ki + 1;
- _starpu_dscal_(&i__2, &remax, &vl[ki + (is + 1) * vl_dim1], &c__1)
- ;
- i__2 = ki - 1;
- for (k = 1; k <= i__2; ++k) {
- vl[k + is * vl_dim1] = 0.;
- vl[k + (is + 1) * vl_dim1] = 0.;
- /* L230: */
- }
- } else {
- if (ki < *n - 1) {
- i__2 = *n - ki - 1;
- _starpu_dgemv_("N", n, &i__2, &c_b22, &vl[(ki + 2) * vl_dim1
- + 1], ldvl, &work[ki + 2 + *n], &c__1, &work[
- ki + *n], &vl[ki * vl_dim1 + 1], &c__1);
- i__2 = *n - ki - 1;
- _starpu_dgemv_("N", n, &i__2, &c_b22, &vl[(ki + 2) * vl_dim1
- + 1], ldvl, &work[ki + 2 + n2], &c__1, &work[
- ki + 1 + n2], &vl[(ki + 1) * vl_dim1 + 1], &
- c__1);
- } else {
- _starpu_dscal_(n, &work[ki + *n], &vl[ki * vl_dim1 + 1], &
- c__1);
- _starpu_dscal_(n, &work[ki + 1 + n2], &vl[(ki + 1) * vl_dim1
- + 1], &c__1);
- }
- emax = 0.;
- i__2 = *n;
- for (k = 1; k <= i__2; ++k) {
- /* Computing MAX */
- d__3 = emax, d__4 = (d__1 = vl[k + ki * vl_dim1], abs(
- d__1)) + (d__2 = vl[k + (ki + 1) * vl_dim1],
- abs(d__2));
- emax = max(d__3,d__4);
- /* L240: */
- }
- remax = 1. / emax;
- _starpu_dscal_(n, &remax, &vl[ki * vl_dim1 + 1], &c__1);
- _starpu_dscal_(n, &remax, &vl[(ki + 1) * vl_dim1 + 1], &c__1);
- }
- }
- ++is;
- if (ip != 0) {
- ++is;
- }
- L250:
- if (ip == -1) {
- ip = 0;
- }
- if (ip == 1) {
- ip = -1;
- }
- /* L260: */
- }
- }
- return 0;
- /* End of DTREVC */
- } /* _starpu_dtrevc_ */
|