123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220 |
- /* dtptri.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- /* Subroutine */ int _starpu_dtptri_(char *uplo, char *diag, integer *n, doublereal *
- ap, integer *info)
- {
- /* System generated locals */
- integer i__1, i__2;
- /* Local variables */
- integer j, jc, jj;
- doublereal ajj;
- extern /* Subroutine */ int _starpu_dscal_(integer *, doublereal *, doublereal *,
- integer *);
- extern logical _starpu_lsame_(char *, char *);
- extern /* Subroutine */ int _starpu_dtpmv_(char *, char *, char *, integer *,
- doublereal *, doublereal *, integer *);
- logical upper;
- extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);
- integer jclast;
- logical nounit;
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DTPTRI computes the inverse of a real upper or lower triangular */
- /* matrix A stored in packed format. */
- /* Arguments */
- /* ========= */
- /* UPLO (input) CHARACTER*1 */
- /* = 'U': A is upper triangular; */
- /* = 'L': A is lower triangular. */
- /* DIAG (input) CHARACTER*1 */
- /* = 'N': A is non-unit triangular; */
- /* = 'U': A is unit triangular. */
- /* N (input) INTEGER */
- /* The order of the matrix A. N >= 0. */
- /* AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
- /* On entry, the upper or lower triangular matrix A, stored */
- /* columnwise in a linear array. The j-th column of A is stored */
- /* in the array AP as follows: */
- /* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
- /* if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n. */
- /* See below for further details. */
- /* On exit, the (triangular) inverse of the original matrix, in */
- /* the same packed storage format. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* > 0: if INFO = i, A(i,i) is exactly zero. The triangular */
- /* matrix is singular and its inverse can not be computed. */
- /* Further Details */
- /* =============== */
- /* A triangular matrix A can be transferred to packed storage using one */
- /* of the following program segments: */
- /* UPLO = 'U': UPLO = 'L': */
- /* JC = 1 JC = 1 */
- /* DO 2 J = 1, N DO 2 J = 1, N */
- /* DO 1 I = 1, J DO 1 I = J, N */
- /* AP(JC+I-1) = A(I,J) AP(JC+I-J) = A(I,J) */
- /* 1 CONTINUE 1 CONTINUE */
- /* JC = JC + J JC = JC + N - J + 1 */
- /* 2 CONTINUE 2 CONTINUE */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters. */
- /* Parameter adjustments */
- --ap;
- /* Function Body */
- *info = 0;
- upper = _starpu_lsame_(uplo, "U");
- nounit = _starpu_lsame_(diag, "N");
- if (! upper && ! _starpu_lsame_(uplo, "L")) {
- *info = -1;
- } else if (! nounit && ! _starpu_lsame_(diag, "U")) {
- *info = -2;
- } else if (*n < 0) {
- *info = -3;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DTPTRI", &i__1);
- return 0;
- }
- /* Check for singularity if non-unit. */
- if (nounit) {
- if (upper) {
- jj = 0;
- i__1 = *n;
- for (*info = 1; *info <= i__1; ++(*info)) {
- jj += *info;
- if (ap[jj] == 0.) {
- return 0;
- }
- /* L10: */
- }
- } else {
- jj = 1;
- i__1 = *n;
- for (*info = 1; *info <= i__1; ++(*info)) {
- if (ap[jj] == 0.) {
- return 0;
- }
- jj = jj + *n - *info + 1;
- /* L20: */
- }
- }
- *info = 0;
- }
- if (upper) {
- /* Compute inverse of upper triangular matrix. */
- jc = 1;
- i__1 = *n;
- for (j = 1; j <= i__1; ++j) {
- if (nounit) {
- ap[jc + j - 1] = 1. / ap[jc + j - 1];
- ajj = -ap[jc + j - 1];
- } else {
- ajj = -1.;
- }
- /* Compute elements 1:j-1 of j-th column. */
- i__2 = j - 1;
- _starpu_dtpmv_("Upper", "No transpose", diag, &i__2, &ap[1], &ap[jc], &
- c__1);
- i__2 = j - 1;
- _starpu_dscal_(&i__2, &ajj, &ap[jc], &c__1);
- jc += j;
- /* L30: */
- }
- } else {
- /* Compute inverse of lower triangular matrix. */
- jc = *n * (*n + 1) / 2;
- for (j = *n; j >= 1; --j) {
- if (nounit) {
- ap[jc] = 1. / ap[jc];
- ajj = -ap[jc];
- } else {
- ajj = -1.;
- }
- if (j < *n) {
- /* Compute elements j+1:n of j-th column. */
- i__1 = *n - j;
- _starpu_dtpmv_("Lower", "No transpose", diag, &i__1, &ap[jclast], &ap[
- jc + 1], &c__1);
- i__1 = *n - j;
- _starpu_dscal_(&i__1, &ajj, &ap[jc + 1], &c__1);
- }
- jclast = jc;
- jc = jc - *n + j - 2;
- /* L40: */
- }
- }
- return 0;
- /* End of DTPTRI */
- } /* _starpu_dtptri_ */
|