123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361 |
- /* dsytrd.f -- translated by f2c (version 20061008).
- You must link the resulting object file with libf2c:
- on Microsoft Windows system, link with libf2c.lib;
- on Linux or Unix systems, link with .../path/to/libf2c.a -lm
- or, if you install libf2c.a in a standard place, with -lf2c -lm
- -- in that order, at the end of the command line, as in
- cc *.o -lf2c -lm
- Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
- http://www.netlib.org/f2c/libf2c.zip
- */
- #include "f2c.h"
- #include "blaswrap.h"
- /* Table of constant values */
- static integer c__1 = 1;
- static integer c_n1 = -1;
- static integer c__3 = 3;
- static integer c__2 = 2;
- static doublereal c_b22 = -1.;
- static doublereal c_b23 = 1.;
- /* Subroutine */ int _starpu_dsytrd_(char *uplo, integer *n, doublereal *a, integer *
- lda, doublereal *d__, doublereal *e, doublereal *tau, doublereal *
- work, integer *lwork, integer *info)
- {
- /* System generated locals */
- integer a_dim1, a_offset, i__1, i__2, i__3;
- /* Local variables */
- integer i__, j, nb, kk, nx, iws;
- extern logical _starpu_lsame_(char *, char *);
- integer nbmin, iinfo;
- logical upper;
- extern /* Subroutine */ int _starpu_dsytd2_(char *, integer *, doublereal *,
- integer *, doublereal *, doublereal *, doublereal *, integer *), _starpu_dsyr2k_(char *, char *, integer *, integer *, doublereal
- *, doublereal *, integer *, doublereal *, integer *, doublereal *,
- doublereal *, integer *), _starpu_dlatrd_(char *,
- integer *, integer *, doublereal *, integer *, doublereal *,
- doublereal *, doublereal *, integer *), _starpu_xerbla_(char *,
- integer *);
- extern integer _starpu_ilaenv_(integer *, char *, char *, integer *, integer *,
- integer *, integer *);
- integer ldwork, lwkopt;
- logical lquery;
- /* -- LAPACK routine (version 3.2) -- */
- /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
- /* November 2006 */
- /* .. Scalar Arguments .. */
- /* .. */
- /* .. Array Arguments .. */
- /* .. */
- /* Purpose */
- /* ======= */
- /* DSYTRD reduces a real symmetric matrix A to real symmetric */
- /* tridiagonal form T by an orthogonal similarity transformation: */
- /* Q**T * A * Q = T. */
- /* Arguments */
- /* ========= */
- /* UPLO (input) CHARACTER*1 */
- /* = 'U': Upper triangle of A is stored; */
- /* = 'L': Lower triangle of A is stored. */
- /* N (input) INTEGER */
- /* The order of the matrix A. N >= 0. */
- /* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
- /* On entry, the symmetric matrix A. If UPLO = 'U', the leading */
- /* N-by-N upper triangular part of A contains the upper */
- /* triangular part of the matrix A, and the strictly lower */
- /* triangular part of A is not referenced. If UPLO = 'L', the */
- /* leading N-by-N lower triangular part of A contains the lower */
- /* triangular part of the matrix A, and the strictly upper */
- /* triangular part of A is not referenced. */
- /* On exit, if UPLO = 'U', the diagonal and first superdiagonal */
- /* of A are overwritten by the corresponding elements of the */
- /* tridiagonal matrix T, and the elements above the first */
- /* superdiagonal, with the array TAU, represent the orthogonal */
- /* matrix Q as a product of elementary reflectors; if UPLO */
- /* = 'L', the diagonal and first subdiagonal of A are over- */
- /* written by the corresponding elements of the tridiagonal */
- /* matrix T, and the elements below the first subdiagonal, with */
- /* the array TAU, represent the orthogonal matrix Q as a product */
- /* of elementary reflectors. See Further Details. */
- /* LDA (input) INTEGER */
- /* The leading dimension of the array A. LDA >= max(1,N). */
- /* D (output) DOUBLE PRECISION array, dimension (N) */
- /* The diagonal elements of the tridiagonal matrix T: */
- /* D(i) = A(i,i). */
- /* E (output) DOUBLE PRECISION array, dimension (N-1) */
- /* The off-diagonal elements of the tridiagonal matrix T: */
- /* E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. */
- /* TAU (output) DOUBLE PRECISION array, dimension (N-1) */
- /* The scalar factors of the elementary reflectors (see Further */
- /* Details). */
- /* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
- /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
- /* LWORK (input) INTEGER */
- /* The dimension of the array WORK. LWORK >= 1. */
- /* For optimum performance LWORK >= N*NB, where NB is the */
- /* optimal blocksize. */
- /* If LWORK = -1, then a workspace query is assumed; the routine */
- /* only calculates the optimal size of the WORK array, returns */
- /* this value as the first entry of the WORK array, and no error */
- /* message related to LWORK is issued by XERBLA. */
- /* INFO (output) INTEGER */
- /* = 0: successful exit */
- /* < 0: if INFO = -i, the i-th argument had an illegal value */
- /* Further Details */
- /* =============== */
- /* If UPLO = 'U', the matrix Q is represented as a product of elementary */
- /* reflectors */
- /* Q = H(n-1) . . . H(2) H(1). */
- /* Each H(i) has the form */
- /* H(i) = I - tau * v * v' */
- /* where tau is a real scalar, and v is a real vector with */
- /* v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in */
- /* A(1:i-1,i+1), and tau in TAU(i). */
- /* If UPLO = 'L', the matrix Q is represented as a product of elementary */
- /* reflectors */
- /* Q = H(1) H(2) . . . H(n-1). */
- /* Each H(i) has the form */
- /* H(i) = I - tau * v * v' */
- /* where tau is a real scalar, and v is a real vector with */
- /* v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i), */
- /* and tau in TAU(i). */
- /* The contents of A on exit are illustrated by the following examples */
- /* with n = 5: */
- /* if UPLO = 'U': if UPLO = 'L': */
- /* ( d e v2 v3 v4 ) ( d ) */
- /* ( d e v3 v4 ) ( e d ) */
- /* ( d e v4 ) ( v1 e d ) */
- /* ( d e ) ( v1 v2 e d ) */
- /* ( d ) ( v1 v2 v3 e d ) */
- /* where d and e denote diagonal and off-diagonal elements of T, and vi */
- /* denotes an element of the vector defining H(i). */
- /* ===================================================================== */
- /* .. Parameters .. */
- /* .. */
- /* .. Local Scalars .. */
- /* .. */
- /* .. External Subroutines .. */
- /* .. */
- /* .. Intrinsic Functions .. */
- /* .. */
- /* .. External Functions .. */
- /* .. */
- /* .. Executable Statements .. */
- /* Test the input parameters */
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1;
- a -= a_offset;
- --d__;
- --e;
- --tau;
- --work;
- /* Function Body */
- *info = 0;
- upper = _starpu_lsame_(uplo, "U");
- lquery = *lwork == -1;
- if (! upper && ! _starpu_lsame_(uplo, "L")) {
- *info = -1;
- } else if (*n < 0) {
- *info = -2;
- } else if (*lda < max(1,*n)) {
- *info = -4;
- } else if (*lwork < 1 && ! lquery) {
- *info = -9;
- }
- if (*info == 0) {
- /* Determine the block size. */
- nb = _starpu_ilaenv_(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1);
- lwkopt = *n * nb;
- work[1] = (doublereal) lwkopt;
- }
- if (*info != 0) {
- i__1 = -(*info);
- _starpu_xerbla_("DSYTRD", &i__1);
- return 0;
- } else if (lquery) {
- return 0;
- }
- /* Quick return if possible */
- if (*n == 0) {
- work[1] = 1.;
- return 0;
- }
- nx = *n;
- iws = 1;
- if (nb > 1 && nb < *n) {
- /* Determine when to cross over from blocked to unblocked code */
- /* (last block is always handled by unblocked code). */
- /* Computing MAX */
- i__1 = nb, i__2 = _starpu_ilaenv_(&c__3, "DSYTRD", uplo, n, &c_n1, &c_n1, &
- c_n1);
- nx = max(i__1,i__2);
- if (nx < *n) {
- /* Determine if workspace is large enough for blocked code. */
- ldwork = *n;
- iws = ldwork * nb;
- if (*lwork < iws) {
- /* Not enough workspace to use optimal NB: determine the */
- /* minimum value of NB, and reduce NB or force use of */
- /* unblocked code by setting NX = N. */
- /* Computing MAX */
- i__1 = *lwork / ldwork;
- nb = max(i__1,1);
- nbmin = _starpu_ilaenv_(&c__2, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1);
- if (nb < nbmin) {
- nx = *n;
- }
- }
- } else {
- nx = *n;
- }
- } else {
- nb = 1;
- }
- if (upper) {
- /* Reduce the upper triangle of A. */
- /* Columns 1:kk are handled by the unblocked method. */
- kk = *n - (*n - nx + nb - 1) / nb * nb;
- i__1 = kk + 1;
- i__2 = -nb;
- for (i__ = *n - nb + 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ +=
- i__2) {
- /* Reduce columns i:i+nb-1 to tridiagonal form and form the */
- /* matrix W which is needed to update the unreduced part of */
- /* the matrix */
- i__3 = i__ + nb - 1;
- _starpu_dlatrd_(uplo, &i__3, &nb, &a[a_offset], lda, &e[1], &tau[1], &
- work[1], &ldwork);
- /* Update the unreduced submatrix A(1:i-1,1:i-1), using an */
- /* update of the form: A := A - V*W' - W*V' */
- i__3 = i__ - 1;
- _starpu_dsyr2k_(uplo, "No transpose", &i__3, &nb, &c_b22, &a[i__ * a_dim1
- + 1], lda, &work[1], &ldwork, &c_b23, &a[a_offset], lda);
- /* Copy superdiagonal elements back into A, and diagonal */
- /* elements into D */
- i__3 = i__ + nb - 1;
- for (j = i__; j <= i__3; ++j) {
- a[j - 1 + j * a_dim1] = e[j - 1];
- d__[j] = a[j + j * a_dim1];
- /* L10: */
- }
- /* L20: */
- }
- /* Use unblocked code to reduce the last or only block */
- _starpu_dsytd2_(uplo, &kk, &a[a_offset], lda, &d__[1], &e[1], &tau[1], &iinfo);
- } else {
- /* Reduce the lower triangle of A */
- i__2 = *n - nx;
- i__1 = nb;
- for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
- /* Reduce columns i:i+nb-1 to tridiagonal form and form the */
- /* matrix W which is needed to update the unreduced part of */
- /* the matrix */
- i__3 = *n - i__ + 1;
- _starpu_dlatrd_(uplo, &i__3, &nb, &a[i__ + i__ * a_dim1], lda, &e[i__], &
- tau[i__], &work[1], &ldwork);
- /* Update the unreduced submatrix A(i+ib:n,i+ib:n), using */
- /* an update of the form: A := A - V*W' - W*V' */
- i__3 = *n - i__ - nb + 1;
- _starpu_dsyr2k_(uplo, "No transpose", &i__3, &nb, &c_b22, &a[i__ + nb +
- i__ * a_dim1], lda, &work[nb + 1], &ldwork, &c_b23, &a[
- i__ + nb + (i__ + nb) * a_dim1], lda);
- /* Copy subdiagonal elements back into A, and diagonal */
- /* elements into D */
- i__3 = i__ + nb - 1;
- for (j = i__; j <= i__3; ++j) {
- a[j + 1 + j * a_dim1] = e[j];
- d__[j] = a[j + j * a_dim1];
- /* L30: */
- }
- /* L40: */
- }
- /* Use unblocked code to reduce the last or only block */
- i__1 = *n - i__ + 1;
- _starpu_dsytd2_(uplo, &i__1, &a[i__ + i__ * a_dim1], lda, &d__[i__], &e[i__],
- &tau[i__], &iinfo);
- }
- work[1] = (doublereal) lwkopt;
- return 0;
- /* End of DSYTRD */
- } /* _starpu_dsytrd_ */
|